Trading Toolbox™
User's Guide

A

MATLAB

R2015b <} MathWorks

X B

How to Contact MathWorks

Latest news: www . mathworks .com

Sales and services: www.mathworks.com/sales_and_services
User community: www . mathworks .com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Trading Toolbox™ User's Guide
© COPYRIGHT 2013-2015 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails

to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks . com/patents for more information.

Revision History

March 2013 Online only New for Version 1.0 (Release 2013a)
September 2013 Online only Revised for Version 2.0 (Release 2013b)
March 2014 Online only Revised for Version 2.1 (Release 2014a)
October 2014 Online only Revised for Version 2.1.1 (Release 2014b)
March 2015 Online only Revised for Version 2.2 (Release 2015a)

September 2015 Online only Revised for Version 2.2.1 (Release 2015b)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Getting Started
Trading Toolbox Product Description 1-2
Key Features i, 1-2
Installation 1-3
Bloomberg 1-3
CQG ... e 1-3
FIX Flyer e 1-3
Interactive Brokers 1-3
Trading Technologies 14
Trading System Providers 1-5
Supported Providers 1-5
Connection Requirements 1-5
Create an Order Using IB Trader Workstation 1-7
Create an Order Using CQG 1-11
Create an Order Using Bloomberg EMSX 1-13
Create an Order Using X TRADER 1-16
Create an Order Using FIX Flyer 1-19
Writing and Running Custom Event Handler Functions with
Bloomberg EMSX 1-23
Write a Custom Event Handler Function 1-23
Run a Custom Event Handler Function 1-23
Workflow for Custom Event Handler Function 1-24

iii

Writing and Running Custom Event Handler Functions with

Interactive Brokers 1-26
Write a Custom Event Handler Function 1-26

Run a Custom Event Handler Function 1-26
Workflow for Custom Event Handler Function 1-27
Workflow Models

Workflow for Bloomberg EMSX 2-2
Workflows for Trading Technologies X_TRADER 2-4
Workflow for Interactive Brokers 2-6
Request Interactive Brokers Market Data 2-6
Create Interactive Brokers Orders 2-7
Request Interactive Brokers Informational Data 2-7
Workflow for CQG 2-8
Workflow for FIX Flyer 2-10
Create a FIX Messageccuiiininnnn... 2-10
Request Data and Create Orders Using FIX Messages 2-10
Receive a FIX Message, 2-11

Sample Code for Workflows

3

Listen for X TRADER Price Updates 3-2
Listen for X_TRADER Price Market Depth Updates 3-4
Submit X TRADER Ordersu... 3-8
Create and Manage a Bloomberg EMSX Order 3-12
Create and Manage a Bloomberg EMSX Route 3-16

iv Contents

Manage a Bloomberg EMSX Order and Route 3-21

Create and Manage an Interactive Brokers Order 3-26
Request Interactive Brokers Historical Data 3-32
Request Interactive Brokers Real-Time Data 3-35
Create Interactive Brokers Combination Order 3-39
Create CQG Oxders 3-45
Request CQG Historical Data 3-50
Request CQG Intraday Tick Data 3-53
Request CQG Real-Time Data 3-57

Functions — Alphabetical List

4

Getting Started

* “Trading Toolbox Product Description” on page 1-2

+ “Installation” on page 1-3

+ “Trading System Providers” on page 1-5

* “Create an Order Using IB Trader Workstation” on page 1-7
+ “Create an Order Using CQG” on page 1-11

+ “Create an Order Using Bloomberg EMSX” on page 1-13

* “Create an Order Using X_TRADER” on page 1-16

+ “Create an Order Using FIX Flyer” on page 1-19

+ “Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on
page 1-23

* “Writing and Running Custom Event Handler Functions with Interactive Brokers” on
page 1-26

1 Getting Started

Trading Toolbox Product Description

1-2

Access prices and send orders to trading systems

Trading Toolbox provides functions for accessing trade and quote pricing data, defining
order types, and sending orders to financial trading markets. The toolbox lets you

integrate streaming and event-based data into MATLAB®, enabling you to develop
financial trading strategies and algorithms that analyze and react to the market in
real time. You can build algorithmic or automated trading strategies that work across
multiple asset classes, instrument types, and trading markets while integrating with
industry-standard trade execution platforms.

With Trading Toolbox, you can subscribe to streams of tradable instrument data,
including quotes, volumes, trades, market depth, and instrument metadata. You also
can define order types and instructions for how to route and fill orders. Trading Toolbox

supports Bloomberg® EMSX, CQG® Integrated Client, Interactive Brokers® TWS, FIX
Flyer™, and Trading Technologies® X_TRADER".

Key Features

+ Access to current, intraday, event-based, and real-time tradable instrument data
+ Data filtering by instrument and exchange

+ Definable order types and execution instructions

* Bloomberg EMSX order execution

* Trading Technologies X_TRADER instrument pricing and order execution

+ CQG Integrated Client instrument pricing, order execution, and historical price
retrieval

* Interactive Brokers TWS instrument pricing, order execution, and historical price
retrieval

Installation

Installation

In this section...

“Bloomberg” on page 1-3
“CQG” on page 1-3
“FIX Flyer” on page 1-3

“Interactive Brokers” on page 1-3

“Trading Technologies” on page 1-4

Bloomberg

Find the latest installation files at http://www.bloomberg.com to install Bloomberg EMSX
from Bloomberg L.P. You need a Bloomberg license to install and run Bloomberg EMSX.

QG

Find the latest installation files at http://www.cqg.com to install CQG. You need a CQG
license to install and run CQG.

FIX Flyer

Find the latest installation files at the FIX Flyer Download Portal to install FIX Flyer.
You need a FIX Flyer license to install and run FIX Flyer.

Interactive Brokers

1 Download and install the IB Trader Workstation®™ Desktop Trading Client. Find the
latest installation files at https://www.interactivebrokers.com/en/index.php?f=552.

2 Download and install the Interactive Brokers API software. Find the latest
installation files at http://interactivebrokers.github.io/.

You need an Interactive Brokers license to install and run Interactive Brokers.

1-3

http://www.bloomberg.com
http://www.cqg.com
http://downloads.fixflyer.com
https://www.interactivebrokers.com/en/index.php?f=552
http://interactivebrokers.github.io/

1 Getting Started

Trading Technologies
Find the latest installation files at http://www.tradingtechnologies.com to install Trading

Technologies. You need a Trading Technologies license to install and run Trading
Technologies.

1-4

http://www.tradingtechnologies.com

Trading System Providers

Trading System Providers

In this section...

“Supported Providers” on page 1-5

“Connection Requirements” on page 1-5

Supported Providers

This toolbox supports connections to financial trading systems provided by the following
corporations:

+ Bloomberg EMSX from Bloomberg L.P. (http://www.bloomberg.com)

Note: Only the Bloomberg Desktop API is supported.

+ CQG (http://www.cqg.com)
+ FIX Flyer (http:/fixflyer.com/)
+ IB Trader Workstation from Interactive Brokers (http://www.interactivebrokers.com)

Note: 1B Trader Workstation versions 9.69 and 9.7 and later are supported.

+ X_TRADER from Trading Technologies (http://www.tradingtechnologies.com)

See the MathWorks® website for the system requirements for connecting to these trading
systems.
Connection Requirements

To connect to these trading systems, additional requirements apply. The following data
service providers require you to install proprietary software on your PC:

* Bloomberg EMSX

Note: You need the Bloomberg Desktop software license for the host on which Trading
Toolbox and MATLAB software are running.

- CQG

1-5

http://www.bloomberg.com
http://www.cqg.com
http://fixflyer.com/
http://www.interactivebrokers.com
http://www.tradingtechnologies.com
http://www.mathworks.com/products/trading/requirements.html

1 Getting Started

* FIX Flyer
» Interactive Brokers IB Trader Workstation

* Trading Technologies X_TRADER
You must have a valid license for required client software on your machine.

For more information about how to obtain required software, contact your trading system

sales representative.

Create an Order Using IB Trader Workstation

Create an Order Using IB Trader Workstation

This example shows how to connect to the IB Trader Workstation, retrieve historical
data, create a market order, and specify a different instrument.

Run the IB Trader Workstation application.

Ensure the IB Trader Workstation application is running, and that API connections are
enabled. You can do this from within IB Trader Workstation.

1 Select File > Global Configuration to open the Trader Workstation Configuration
(Simulated Trading) dialog box.

2 Select API > Settings.
3 Ensure that the Enable ActiveX and Socket Clients check box is selected.

Connect to the IB Trader Workstation.

Connect to the IB Trader Workstation and create connection ib using the local host and
default port number 7496.

ib = ibtws("",7496);

When the Accept incoming connection attempt message appears in the IB Trader
Workstation, click Yes.

Retrieve historical and current data.

Create the IB Trader Workstation 1Contract object ibContract. This object denotes

the security. For this example, get data for Microsoft® MSFT stock. Specifying SMART as
the exchange lets Interactive Brokers determine which venues to get data from. Setting
the currency type to USD clarifies that you want dollar-denominated stock. This is useful
when stocks are dual-listed or multi-listed across different jurisdictions.

ibContract = ib.Handle.createContract;
ibContract.symbol = "MSFT";
ibContract.secType = "STK";
ibContract.exchange "SMART " ;
ibContract.currency "UsSD*";

Define the period for which you need data, for example, the last 20 business days,
excluding today.

bizDayConvention = 13; % 1.e. BUS/252

1-7

1 Getting Started

startDate
endDate

daysadd(today,-20,bizDayConvention);
daysadd(today,-1, bizDayConvention);

This code uses the daysadd function from Financial Toolbox™ to compute the
appropriate start and end dates.

Retrieve historical data for the last 20 business days.

histTradeData = history(ib, ibContract,startDate,endDate);

Note: The history function accepts additional parameters that let you obtain other
historical data such as option-implied volatility, historical volatility, bid prices, ask
prices, or midpoints. If you do not specify anything, the default data returned are last
traded prices.

Retrieve current price data from the contract.
currentData = getdata(ib, ibContract)

currentData =

LAST_PRICE: 34.93
LAST_SIZE: 1
VOLUME: 66113
BID_PRICE: 34.92
BID_SIZE: 157
ASK_PRICE: 34.93
ASK_SIZE: 129

Create a trade market order.

The IB Trader Workstation supports a variety of order types, including basic types such
as limit orders, stop orders, and market orders. For this example, set up a stock contract
for Microsoft stock. After setting the order type as MKT, then specify the action, in this
case BUY, and the total quantity to trade.

ibMktOrder = ib.Handle.createOrder;
ibMktOrder.action = "BUY";
ibMktOrder.totalQuantity = 100;
ibMktOrder.orderType = “"MKT";

Set a unique order identifier, and send the orders to Interactive Brokers.

Create an Order Using IB Trader Workstation

id = orderid(ib);

result = createOrder(ib, ibContract, ibMktOrder, id)

result

STATUS: "Filled"
FILLED: 100
REMAINING: O
AVG_FILL_PRICE: 34.93
PERM_ID: "456471585"
PARENT_ID: O
LAST _FILL_PRICE: 34.93
CLIENT_ID: O
WHY HELD: "*

Specify a different instrument.

You can trade a variety of instruments using the IB Trader Workstation API, including
equities, futures, options, futures options, and foreign currencies. Here, use the E-mini
Standard and Poor’s 500 futures contract on the CME Globex with a December 2013
expiry. Specify the symbol as ES, the security type to be a futures contract FUT, the
expiry in a YYYYMM date format, the exchange as GLOBEX, and the currency as USD.

ibFutures = i1b.Handle.createContract;
ibFutures.symbol = "ES";
ibFutures.secType = "FUT";
ibFutures.expiry = "201312%; % Dec 2013
ibFutures.exchange = "GLOBEX";
ibFutures.currency = “USD";

Close the connection.

After retrieving data and sending orders, close the IB Trader Workstation connection ib.

close(ib)

See Also

close | createOrder | getdata | history | ibtws

Related Examples

. “Create Interactive Brokers Combination Order” on page 3-39

1 Getting Started

. “Create and Manage an Interactive Brokers Order” on page 3-26
. “Request Interactive Brokers Historical Data” on page 3-32

. “Request Interactive Brokers Real-Time Data” on page 3-35
More About

. “Workflow for Interactive Brokers” on page 2-6

External Websites
. http://www.interactivebrokers.com/en/software/api/api.htm

1-10

http://www.interactivebrokers.com/en/software/api/api.htm

Create an Order Using CQG

Create an Order Using CQG

This example shows how to connect to CQG and create a market order.

Connect to CQG.
Cc = cqg,;

Establish event handlers.

Start the CQG session. Set up event handlers for instrument subscription, orders, and
associated events.

startUp(c)

streamEventNames = {"InstrumentSubscribed”, ...
"InstrumentChanged”, " IncorrectSymbol "};
for i = 1l:length(streamEventNames)
registerevent(c.Handle,{streamEventNames{i}, - ..
@(varargin)cqgrealtimeeventhandler(varargin{:})})
end

orderEventNames = {"AccountChanged”, "OrderChanged”, "AllOrdersCanceled"};
for i = 1:length(orderEventNames)
registerevent(c.Handle,{orderEventNames{i}, - ..
@(varargin)cqgordereventhandler(varargin{:})})
end

Subscribe to the instrument.

Subscribe to a security tied to the EURIBOR.

realtime(c,"F.US_IE")
pause(2)

Create the CQG Instrument object.

To use the instrument for creating an order, import the instrument name
cqglnstrumentName into the current MATLAB workspace. Then, create the
CQGInstrument object cqglnst.

cqglnstrumentName = evalin(“base”, "cqglnstrument®);
cqglnst = c.Handle.Instruments. ltem(cqglnstrumentName);

1-11

1 Getting Started

1-12

Set up account credentials.

Set the CQG flags to enable account information retrieval.

c.Handle.set("AccountSubscriptionLevel ", "aslINone™);
c.Handle.set("AccountSubscriptionLevel ", "aslAccountUpdatesAndOrders™);
pause(2)

accountHandle = c.Handle.Accounts. ItemBylIndex(0);

Create the market order.

Create a market order that buys one share of the subscribed security cqglnst using the
account credentials accountHandle.

orderType = 1; % Market order flag

quantity = 1; % Positive quantity is Buy, negative is Sell
oMarket = createOrder(c,cqglnst,orderType,accountHandle,quantity);
oMarket.Place

Close the connection.

close(c)

See Also

close | cqg | createOrder | realtime | startUp

Related Examples

. “Create CQG Orders” on page 3-45

. “Request CQG Historical Data” on page 3-50

. “Request CQG Intraday Tick Data” on page 3-53
. “Request CQG Real-Time Data” on page 3-57

More About
. “Workflow for CQG” on page 2-8

External Websites
. CQG API Reference Guide

http://partners.cqg.com/api-resources/technical-documentation

Create an Order Using Bloomberg EMSX

Create an Order Using Bloomberg EMSX

This example shows how to connect to Bloomberg EMSX and create and route a market

order.

For details about connecting to Bloomberg EMSX and creating orders, see the EMSX API
Programmer’s Guide.

Connect to Bloomberg EMSX

1

If you are using emsx for the first time, you need to install a Java®™ archive file from
Bloomberg for emsx and other Bloomberg commands to work correctly.

If you already have blpapi3. jar downloaded from Bloomberg, you can find it in
your Bloomberg folders at . .\blIp\api\APIv3\JavaAPI\lib\blpapi3.jaror ..
\blIp\api\APIv3\JavaAPI\v3._x\lib\blpapi3.jar. If you have blpapi3. jar,
go to step 3.

If blpapi3.jar is not downloaded from Bloomberg, then download it as follows:

a

b

In your Bloomberg terminal, type WAP1 {GO} to open the API Developer’s Help
Site screen.

Click API Download Center, then click Desktop API.

After downloading blpapi3. jar on your system, add it to the MATLAB Java
class path using javaaddpath.

You need to do this for every session of MATLAB. To avoid repeating this

at every session, add javaaddpath to your startup.m file or add the full
path for blpapi3.jar to your Javaclasspath.txt file. For details about
Javaclasspath.txt, see “Java Class Path”. For details about editing your
startup.m file, see “Startup Options in MATLAB Startup File”.

Connect to the Bloomberg EMSX test service.

C

(o}

emsx("//blp/emapisvc_beta®)

emsx with properties:

Session: [1x1 com.bloomberglp.blpapi.Session]
Service: [1x1 com.bloomberglp.blpapi.impl.aQ]

1-13

1 Getting Started

Ipaddress: "localhost”
Port: 8194

MATLAB returns c as the connection to the Bloomberg EMSX test service with the
following:

* Bloomberg EMSX session object

* Bloomberg EMSX service object

+ IP address of the machine running the Bloomberg EMSX test service

* Port number of the machine running the Bloomberg EMSX test service

Create the market order request

Create an order request structure order for a buy market order of 400 shares of IBM®.
Specify the broker as EF1X, use any hand instruction, and set the time in force to DAY.

order .EMSX_ORDER_TYPE = “MKT";
order _EMSX_SIDE = "BUY";

order .EMSX_TICKER = "IBM";
order .EMSX_AMOUNT = int32(400);
order .EMSX_BROKER = "EFIX";

order _.EMSX_HAND_INSTRUCTION = "ANY~";
order _.EMSX_TIF = "DAY";

Create and route the market order

Create and route the market order using the Bloomberg EMSX connection ¢ and order
request structure order.

events = createOrderAndRoute(c,order);
events =
EMSX_SEQUENCE: 335877

EMSX_ROUTE_ID: 1
MESSAGE: "Order created and routed”

The default event handler processes the events associated with creating and routing the
order. createOrderAndRoute returns events as a structure that contains these fields:

* Bloomberg EMSX order number
* Bloomberg EMSX route identifier

1-14

Create an Order Using Bloomberg EMSX

* Bloomberg EMSX message

Close the Bloomberg EMSX connection

close(c)

See Also

close | createOrderAndRoute | emsx

Related Examples

. “Create and Manage a Bloomberg EMSX Order” on page 3-12
. “Create and Manage a Bloomberg EMSX Route” on page 3-16
. “Manage a Bloomberg EMSX Order and Route” on page 3-21

More About
. “Workflow for Bloomberg EMSX” on page 2-2

1-15

1 Getting Started

Create an Order Using X_TRADER

1-16

This example shows how to connect to Trading Technologies X_TRADER and create a
market order.

Connect to Trading Technologies X_TRADER.
c = xtrdr;
Create an instrument for a contract.

Create an instrument for a contract of CAISO NP15 EZ Gen Hub 5 MW Peak Calendar-
Day Real-Time LMP Futures with an expiration date of August 2014 on the Chicago
Mercantile Exchange.

createlnstrument(c, "Exchange®, "CME", "Product”, "2F", ...
"ProdType*®, "Future®, "Contract”, "Augl4”, ...
"Alias”, "SubmitOrderInstrument3®)

Register an event handler for the order server.

Register an event handler to check the order server status.

sExchange = c.Instrument.Exchange;
c.Gate.registerevent({"OnExchangeStateUpdate™, ...
@(varargin)ttorderserverstatus(varargin{:},sExchange)})

Create an order set and set order properties.

Create an empty order set. Then, set order set properties. Setting the first property

to true (1) enables the X_TRADER API to send order rejection notifications. Setting

the second property to true (1) enables the X_TRADER API to add order pairs for all
order updates to the order tracker list in this order set. Setting the third property to
ORD_NOTIFY_NORMAL sets the X_TRADER API notification mode for order status events
to normal.

createOrderSet(c)
c.OrderSet(1) .EnableOrderRejectData = 1;
c.OrderSet(1) .EnableOrderUpdateData = 1;

c.OrderSet(1) .0rderStatusNotifyMode “ORD_NOTIFY_NORMAL* ;
Set position limit checks.

c.OrderSet(1).Set("NetLimits",false)

Create an Order Using X_TRADER

Register event handlers for order status.

Register event handlers to track events associated with the order status.

registerevent(c.OrderSet(1),{"OnOrderFilled", ...
@(varargin)ttorderevent(varargin{:},c)})
registerevent(c.OrderSet(1l),{"OnOrderRejected”, . ..
@(varargin)ttorderevent(varargin{:},c)})
registerevent(c.OrderSet(1),{"OnOrderSubmitted”, ...
@(varargin)ttorderevent(varargin{:},c)})
registerevent(c.OrderSet(1),{"OnOrderDeleted”, . ..
@(varargin)ttorderevent(varargin{:},c)})

Enable order submission.

Open the instrument for trading and enable the X_TRADER API to retrieve market
depth information when opening the instrument.

c.OrderSet(1) .0pen(1)

Build an order profile with the existing instrument.

orderProfile = createOrderProfile(c, " Instrument”,c. Instrument(l));
Set the customer default property.

Assign the customer defaults for trading an instrument.

orderProfile.Customer = "<Default>";
Set up the order profile as a market order.

Set up the order profile as a market order for buying 225 shares.

orderProfile._Set("BuySell~, “"Buy”)
orderProfile._Set("Qty~,"225%)
orderProfile._Set("OrderType®,"M")

Check the order server status.

nCounter = 1;

while ~exist("bServerUp®,“var®) && nCounter < 20
% bServerUp is created by ttorderserverstatus
pause(1)
nCounter = nCounter + 1;

end

1-17

1 Getting Started

1-18

Verify the order server availability and submit the order.

if exist("bServerUp®,"var®) && bServerUp
% Submit the order
submittedQuantity = c.OrderSet(1l).SendOrder(orderProfile);
disp(["Quantity Sent: " num2str(submittedQuantity)])
else
disp("Order server is down. Unable to submit order.")
end

The X_TRADER API submits the order to the exchange and returns the number of
contracts sent for lot-based contracts or the flow quantity sent for flow-based contracts in
the output argument submittedQuantity.

Close the connection.

close(c)

See Also

close | createlnstrument | createOrderProfile | createOrderSet | xtrdr

Related Examples

. “Listen for X_TRADER Price Updates” on page 3-2

. “Listen for X_TRADER Price Market Depth Updates” on page 3-4
. “Submit X_TRADER Orders” on page 3-8

More About
. “Workflows for Trading Technologies X_TRADER” on page 2-4

External Websites

. https://developer.tradingtechnologies.com/x_trader-api

https://developer.tradingtechnologies.com/x_trader-api

Create an Order Using FIX Flyer

Create an Order Using FIX Flyer

This example shows how to connect to the FIX Flyer Engine, process event data for
sending FIX messages, and interact with a counterparty using FIX messages.

FIX is a financial industry protocol that facilitates low latency trading. For details about
the FIX protocol, see FIX Trading Community.

Connect to FIX Flyer

Import the FIX Flyer Java libraries.

import flyer._apps.*;
import flyer._apps.FlyerApplicationManagerFactory.>;
import flyer.core.session.*;

Create the FIX Flyer Engine connection € using these arguments:

+ User name username
+ Password password

+ IP address ipaddress
* Port number port

username = "user”;
password = "pwd";
ipaddress = "127.0.0.1%;
port = 7002;

c = fixflyer(username,password, ipaddress,port);
Add a Listener and Subscribe to FIX Sessions

Add the FIX Flyer event listener to the FIX Flyer Engine connection c. To listen for and
display the FIX Flyer Engine event data in the Workspace browser, use the sample event
handling listener FixExampleListener. Use FixExampleListener or write a custom
event handling listener function.

FixExampleListener handles the FIX Flyer Engine events. € denotes these events.
You can specify e as any letter.

Ih = addListener(c,@(~,e)fixExampleListener(e));

FfixExampleListener returns a handle to the listener Ih.

1-19

http://www.fixtradingcommunity.org/

1 Getting Started

1-20

Subscribe to FIX sessions and set up the FIX Flyer Application Manager. Register with
the FIX Flyer session. Connect the FIX Flyer Application Manager to the FIX Flyer
Engine and start the internal receiving thread.

c.SessionlD = flyer.core.session.SessionID("Alpha”, ...
“Beta®,"FIX.4.4%);
c.FlyerApplicationManager.registerFIXSession(...
flyer.apps.FixSessionSubscription(...
c.SessionlD, true,0));
c.FlyerApplicationManager.connect();
c.FlyerApplicationManager.start();

Create a FIX Message

Create a FIX message using a structure array Fixstruct. The data in the structure
represents one FIX message. This message denotes a sell side transaction for 100
shares of symbol ABC. The order type is a previously quoted order. The order handling
Instruction is a private automated execution. The order transaction time is the current
moment. The FIX protocol version is 4.4.

fixstruct.BeginString{l,1} = "FIX.4.4";
fixstruct.CLOrdld{1,1} = "338";
fixstruct.Side{l,1} = "2°;
fixstruct.TransactTime{l,1} = datestr(now);
fixstruct.OrdType{1,1} = "D-;
fixstruct.Symbol{l1,1} = "ABC";
fixstruct_HandlInst{1,1} = "1°;
fixstruct.OrderQty{1,1} = "100";

Send a FIX Message

Send the FIX message Fixstruct using the FIX Flyer Engine connection C.
status = sendMessage(c,fixstruct);

status contains a logical zero for a successful message delivery.

Receive a FIX Message

Receive a FIX message response from the FIX Flyer Engine. The sample event
handling listener FixExampleListener returns the raw FIX message in the structure
fixResponseStruct. Display the contents of FixResponseStruct.

TixResponseStruct

fixResponseStruct =

Create an Order Using FIX Flyer

BeginString:
BodyLength:
MsgType:
SenderComplD:
TargetComplD:
MsgSeqNum:
SendingTime:
PossDupFlag:
PossResend:
AvgPx:
ClordID:
CumQty:
ExeclD:
LastMKkt:
LastPx:
LastQty:
OrderlID:
OrderQty:
OrdStatus:
Side:

Symbol :

Text:
TransactTime:
TradeDate:
ExecType:
LeavesQty:
CheckSum:

close(c)

See Also

addListener | fixflyer | sendMessage

More About
“Workflow for FIX Flyer” on page 2-10

{"FIX.4.4"}
{"255"}
{"8"}
{"Beta"}
{"Alpha“}
{"16"}

{"20150602-19:31:56.068"}

{°N"}
{°N"}
{"85.47"}
{"338"}
{"100"}

{"exec-454053004605080"}

{"FL"}
{"85.47"}
{7100}

{"order-454053004596042"}

{7100}
{*3"}
{"27}
{"ABC"}

{"Done For Day Execution®"}
{"20150602-19:31:56.066"}

{"20150602"}
{*3"}

{707}
{7007}

Close the FIX Flyer Connection

Close the FIX Flyer Engine connection.

The fields of the structure FixResponseStruct contain FIX tag names from the
returned raw FIX message. The values of the structure contain the values of the returned
raw FIX message.

1-21

1 Getting Started

External Websites
. FIX Trading Community

1-22

http://www.fixtradingcommunity.org/

Writing and Running Custom Event Handler Functions with Bloomberg EMSX

Writing and Running Custom Event Handler Functions with
Bloomberg EMSX

In this section...

“Write a Custom Event Handler Function” on page 1-23

“Run a Custom Event Handler Function” on page 1-23

“Workflow for Custom Event Handler Function” on page 1-24

Write a Custom Event Handler Function

You can process events related to any Bloomberg EMSX orders and routes by writing a
custom event handler function to use with Trading Toolbox. For example, you can plot
the changes in the number of shares routed. Follow these tasks to write a custom event

handler.

1 Choose the events that you want to process, monitor, or evaluate.

2 Decide how the custom event handler function processes these events.

3 Determine the input and output arguments for the custom event handler function.

4 Write the code for the custom event handler function.

For details, see “Create Functions in Files”. For a code example of an event handler
function, see the function processEventToBlotter in the emsxOrderBlotter.m file.

Run a Custom Event Handler Function

You can run the custom event handler function by using timer. Specify the custom event
handler function name as a function handle and pass this function handle as an input
argument to timer. For details about function handles, see“Create Function Handle”.
For example, suppose you want to create an order using createOrderAndRoute

with the custom event handler function named eventhandler. This code assumes a
Bloomberg EMSX connection ¢, Bloomberg EMSX order order, and timer object t.

1 Run timer to execute eventhandler. The name-value pair argument TimerFcn
specifies the event handler function. The name-value pair argument Period
specifies a 1-second delay between executions of the event handler function. When
the name-value pair argument ExecutionMode is set to FixedRate, the event

1-23

1 Getting Started

1-24

handler function executes immediately after it is added to the MATLAB execution
queue.

t = timer("TimerFcn*,{@c.eventhandler}, "Period®,1,...
"ExecutionMode” , "fixedRate");

Start the timer to initiate and execute eventhandler immediately.

start(t)

Run createOrderAndRoute using the custom event handler by setting
useDefaultEventHandler to false.

createOrderAndRoute(c,order, "useDefaul tEventHandler® ,false)

Stop the timer to stop data updates.
stop(t)

If you want to resume data updates, run start.

Delete the timer once you are done with processing data updates for the Bloomberg
EMSX connection.

delete(t)

Workflow for Custom Event Handler Function

This workflow summarizes the tasks to work with a custom event handler function using
Bloomberg EMSX.

1
2
3

Write a custom event handler function and save it to a file.
Create a connection using emsx.

Subscribe to Bloomberg EMSX fields using orders and routes. You can also write
custom event handler functions to process subscription events.

Run the custom event handler function using timer. Use a function handle to specify
the custom event handler function name to run timer.

Start the timer to execute the custom event handler function immediately using
start.

Stop data updates using stop.
Unsubscribe from Bloomberg EMSX fields by using the API syntax.
Delete the timer using delete.

Writing and Running Custom Event Handler Functions with Bloomberg EMSX

9 Close the connection using close.

See Also

timer | close | createOrderAndRoute | delete | emsx | orders | routes | start
| stop

Related Examples

. “Create Functions in Files”
More About
. “Create Function Handle”

1-25

1 Getting Started

Writing and Running Custom Event Handler Functions with
Interactive Brokers

1-26

In this section...

“Write a Custom Event Handler Function” on page 1-26
“Run a Custom Event Handler Function” on page 1-26

“Workflow for Custom Event Handler Function” on page 1-27

Write a Custom Event Handler Function

You can process events related to any Interactive Brokers data updates by writing

a custom event handler function to use with Trading Toolbox. For example, you can
request data about all open orders or retrieve account information. Follow these tasks to
write a custom event handler.

Choose the events that you want to process, monitor, or evaluate.

Decide how the custom event handler function processes these events.

Determine the input and output arguments for the custom event handler function.

B WN —

Write the code for the custom event handler function.

For details, see “Create Functions in Files”. For a code example of an Interactive Brokers
event handler function, see ibExampleEventHandler._m.

Run a Custom Event Handler Function

You can run the custom event handler function by passing the function name as an input
argument into an existing function. Specify the custom event handler function name as

a string or function handle. For details about function handles, see “Create Function
Handle”.

For example, suppose you want to retrieve real-time data from Interactive Brokers
using realtime with the custom event handler function named eventhandler. You
can use either of these syntaxes to run eventhandler. This code assumes a IB Trader
Workstation connection ib, IB Trader Workstation 1Contract object ibContract, and
Interactive Brokers fields F.

Use a string.

Writing and Running Custom Event Handler Functions with Interactive Brokers

tickerid = realtime(ib, ibContract,f, "eventhandler®);

Or, use a function handle.

tickerid = realtime(ib, ibContract, f,@eventhandler);

Workflow for Custom Event Handler Function

This workflow summarizes the tasks to work with a custom event handler function using
Interactive Brokers.

1 Write a custom event handler function and save it to a file.

2 Create a connection to the IB Trader Workstation using ibtws.

3 Run an existing function to receive data updates. Use the custom event handler
function as an input argument.

Caution: To run default event handler and sample event handler functions, you
must run one event handler function at a time. After you run one event handler,
close the IB Trader Workstation connection. Then, create another connection to run
a different event handler with the same existing function. Otherwise, MATLAB
assigns multiple existing functions to events and errors occur.

4 Close the connection to the IB Trader Workstation using close.

See Also

close | ibtws | realtime

More About
. “Create Functions in Files”
. “Create Function Handle”

1-27

Workflow Models

“Workflow for Bloomberg EMSX” on page 2-2

“Workflows for Trading Technologies X_TRADER” on page 2-4
“Workflow for Interactive Brokers” on page 2-6

“Workflow for CQG” on page 2-8

“Workflow for FIX Flyer” on page 2-10

2 Workflow Models

Workflow for Bloomberg EMSX

2-2

The workflow for Bloomberg EMSX is versatile with many options for alternate flows to
create, route, and manage the status of an open order until it is filled.
Connect to Bloomberg EMSX using emsx.

2 Set up a subscription for orders and routes to obtain events on subsequent requests
using orders and routes.

3 Create a Bloomberg EMSX order. Options in the flow of creating an order are:

Create an order using createOrder.

Route an order using routeOrder.

Route an order with a strategy using routeOrderWithStrat.
* Route multiple orders with a strategy using groupRouteOrderWithStrat.
* Create an order and route using createOrderAndRoute.

+ Create an order and route with a strategy using
createOrderAndRouteWithStrat.

4 Modify an order or route using these functions:

* Modify an order using modifyOrder.
* Modify a route using modi fyRoute.
+ Modify a route with a strategy using modifyRouteWithStrat.

5 Delete an order or route using these functions:

Delete an order using deleteOrder.
+ Delete a route using deleteRoute.

6 Obtain information from Bloomberg EMSX using these functions:

Obtain broker information using getBroker Info.
Obtain Bloomberg EMSX field information using getAllFieldMetaData.

7 Explore information about existing orders and routes using these functions:

* View order transactions with a sample order blotter using emsxOrderBlotter.
* Process the current contents of the event queue using processkEvent.

8 Close the Bloomberg EMSX connection using close.

Workflow for Bloomberg EMSX

Related Examples

“Create an Order Using Bloomberg EMSX” on page 1-13
“Create and Manage a Bloomberg EMSX Order” on page 3-12
“Create and Manage a Bloomberg EMSX Route” on page 3-16
“Manage a Bloomberg EMSX Order and Route” on page 3-21

2-3

2 Workflow Models

Workflows for Trading Technologies X_TRADER

2-4

You can use X_TRADER to monitor market price information and submit orders.
To monitor market price information:

1 Connect to Trading Technologies X_TRADER using xtrdr.
2 Create an event notifier using createNotifier.

3 Create an instrument and attach it to the notifier using createlnstrument.
Optionally, use getData to return information on the instrument that you have
created.

4 Close the Trading Technologies X_TRADER connection using close.
To submit orders to X_TRADER:

Connect to Trading Technologies X_TRADER using xtrdr.
2 Create an event notifier using createNotifier.

3 Create an instrument and attach it to the notifier using create lnstrument.
Optionally, use getData to return information on the instrument that you have
created.

4 Create an order set using createOrderSet to define the level of the order status
events and event handlers for orders that will be submitted to X_TRADER.

5 Define the order using createOrderProfile. An order profile contains the settings
that define an individual order to be submitted.

6 Route the order for execution using the OrderSet object created by
createOrderSet in step 4.

7 Close the Trading Technologies X_TRADER connection using close.

To monitor market price information and respond to market changes by automatically
submitting orders to X_TRADER:

1 Connect to Trading Technologies X_TRADER using xtrdr.

2 Create an event notifier using createNotifier.

3 Create an instrument and attach it to the notifier using createlnstrument. Use
getData to return information on the instrument that you have created.

4 Define events by assigning callbacks for validating or invalidating an instrument
and performing calculations based on the event. Based on some predefined condition

Workflows for Trading Technologies X_TRADER

reached when changes in the incoming data satisfy the condition, event callbacks
execute the functions in steps 5, 6, and 7.

5 Create an order set using createOrderSet to define the level of the order status
events and event handlers for orders that will be submitted to X_TRADER.

6 Define the order using createOrderProfile. An order profile contains the settings
that define an individual order to be submitted.

7 Route the order for execution using the OrderSet object created by
createOrderSet in step 5.

8 Close the Trading Technologies X_TRADER connection using close.

Related Examples

. “Create an Order Using X_TRADER” on page 1-16

. “Listen for X_TRADER Price Updates” on page 3-2

. “Listen for X_TRADER Price Market Depth Updates” on page 3-4
. “Submit X_TRADER Orders” on page 3-8

2-5

2 Workflow Models

Workflow for Interactive Brokers

2-6

In this section...

“Request Interactive Brokers Market Data” on page 2-6
“Create Interactive Brokers Orders” on page 2-7

“Request Interactive Brokers Informational Data” on page 2-7

This diagram shows the functions that you can use with the IB Trader Workstation to
monitor market price information and submit orders.

°! Get Data Create Orders
ibtws accounts getdata orderid close
contractdetails timeseries create0rder
™ — — —
portfolio history oarders
realtime executions
marketdepth

Request Interactive Brokers Market Data

To request current, intraday, real-time, historical, or market depth data:

Connect to the IB Trader Workstation using ibtws.
Create the IB Trader Workstation 1Contract object.
Request current data for a security using getdata.
Request intraday data for a security using timeseries.
Request real-time data for a security using realtime.

Request historical data for a security using history.

N O O WO —

Request market depth data for a security using marketdepth.

Workflow for Interactive Brokers

8

Close the IB Trader Workstation connection using close.

Create Interactive Brokers Orders

To submit orders to the IB Trader Workstation:

0 N O O b WD —

Connect to the IB Trader Workstation using ibtws.
Create the IB Trader Workstation 1Contract object.
Create the IB Trader Workstation 10rder object.
Request a unique order identifier using orderid.
Create and submit the order using createOrder.
Request open order data using orders.

Request executed order data using executions.

Close the IB Trader Workstation connection using close.

Request Interactive Brokers Informational Data

To request information from the IB Trader Workstation:

o 0 b WN —

Connect to the IB Trader Workstation using 1btws.
Create the IB Trader Workstation IContract object.
Request contract detailed data using contractdetails.
Request account information using accounts.

Request portfolio data using portfolio.

Close the IB Trader Workstation connection using close.

Related Examples

“Create an Order Using IB Trader Workstation” on page 1-7

“Create Interactive Brokers Combination Order” on page 3-39

“Create and Manage an Interactive Brokers Order” on page 3-26

“Request Interactive Brokers Historical Data” on page 3-32

“Request Interactive Brokers Real-Time Data” on page 3-35

2-7

2 Workflow Models

Workflow for CQG

This diagram shows the functions you can use with CQG to monitor market price
information and submit orders.

Cisrltggclziggn Get Data Create Orders Cugrll?::jion
cag | realtime createOrder | close
startUp | timeseries . shutDown

history

2-8

To request current, intraday, or historical data:

Create the CQG connection object using cqg.

Define the CQG event handlers.

Connect to CQG using startUp.

Subscribe to a CQG instrument to request real-time data using realtime.
Request intraday data for a security using timeseries.

Request historical data for a security using history.

N O 0 hWODN —

Close the CQG connection using close or shutDown.
To submit orders to CQG:

Create the CQG connection object using cqg.
Define the CQG event handlers.
Connect to CQG using startUp.

B W N —

Create the CQG account credentials object.

Workflow for CQG

5 Subscribe to a CQG instrument to request real-time data using realtime.
6 Create and submit the order using createOrder.
7 Close the CQG connection using close or shutDown.

Related Examples

. “Create an Order Using CQG” on page 1-11

. “Create CQG Orders” on page 3-45

. “Request CQG Historical Data” on page 3-50

. “Request CQG Intraday Tick Data” on page 3-53
. “Request CQG Real-Time Data” on page 3-57

2-9

2 Workflow Models

Workflow for FIX Flyer

In this section...

“Create a FIX Message” on page 2-10
“Request Data and Create Orders Using FIX Messages” on page 2-10
“Receive a FIX Message” on page 2-11

Send FIX messages using the FIX Flyer Engine to:

* Request market data
* Create and manage orders
+ Request news information

* Request other available information using the FIX protocol

Create a FIX Message

Create a FIX message using a structure array or table. To convert between structure
arrays or tables and FIX message strings, use these functions:

1 Convert a structure array that contains FIX tags as fields to a cell array of FIX
message strings using struct2fix.

2 Convert a table that contains FIX tags as variables to a cell array of FIX message
strings using table2fix.

Request Data and Create Orders Using FIX Messages

To request market data, submit orders, and request other information using FIX
messages, you can use the FIX Flyer Engine with these functions:

Connect to the FIX Flyer Engine using fixFflyer.

2 To monitor events associated with the connection and FIX messages, add an event
handling listener using addListener.

3 Send a FIX message to the FIX Flyer Engine using sendMessage.
4 Close the FIX Flyer connection using close.

2-10

Workflow for FIX Flyer

Receive a FIX Message

Receive a FIX message string from the counterparty after completing a transaction. To
convert between FIX message strings and structure arrays or tables, use these functions:

1 Convert a FIX message to a structure array using Fix2struct.

2 Convert a FIX message to a table using fix2table.

Related Examples
. “Create an Order Using FIX Flyer” on page 1-19

External Websites
. FIX Trading Community

2-11

http://www.fixtradingcommunity.org/

Sample Code for Workflows

+ “Listen for X_TRADER Price Updates” on page 3-2

+ “Listen for X_TRADER Price Market Depth Updates” on page 3-4
+ “Submit X_TRADER Orders” on page 3-8

* “Create and Manage a Bloomberg EMSX Order” on page 3-12

+ “Create and Manage a Bloomberg EMSX Route” on page 3-16

+ “Manage a Bloomberg EMSX Order and Route” on page 3-21

* “Create and Manage an Interactive Brokers Order” on page 3-26
+ “Request Interactive Brokers Historical Data” on page 3-32

+ “Request Interactive Brokers Real-Time Data” on page 3-35

+ “Create Interactive Brokers Combination Order” on page 3-39

+ “Create CQG Orders” on page 3-45

+ “Request CQG Historical Data” on page 3-50

+ “Request CQG Intraday Tick Data” on page 3-53

+ “Request CQG Real-Time Data” on page 3-57

3 Sample Code for Workflows

Listen for X_TRADER Price Updates

This example shows how to connect to X_TRADER and listen for price update event data.
Connect to X_TRADER

X = xtrdr;

Create an Event Notifier

The event notifier is the X_TRADER mechanism that lets you define MATLAB functions
to use as callbacks for specific events.

createNotifier(X)

Create an Instrument

Create an instrument and attach it to the notifier.

createlnstrument(X, "Exchange®, "CME", "Product®,"2F", ...
"ProdType*, "Future”, "Contract”, "Augl3~, ...
*Alias”, "Pricelnstrumentl®)

X.InstrNotify(l) .Attachlnstrument(X. Instrument(l))

Define Events

Assign callbacks for validating or invalidating an instrument, and for handling data
updates for a previously validated instrument.

registerevent(X. InstrNotify(1),{"OnNotifyFound®, ...
@(varargin)ttinstrumentfound(varargin{:})})

registerevent(X. InstrNotify(1),{"OnNotifyNotFound~, ...
@(varargin)ttinstrumentnotfound(varargin{:})})

registerevent(X. InstrNotify(1),{ OnNotifyUpdate~, ...
@(varargin)ttinstrumentupdate(varargin{:})})

Monitor Events

Set the update filter to monitor the desired fields. In this example, events are monitored
for updates to last price, last quantity, previous last quantity, and a change in prices.
Listen for this event data.

X.InstrNotify(l) .UpdateFilter = "Last$,LastQty$,~LastQty$,Change$”;
X.Instrument(1) .0Open(0)

Listen for X_TRADER Price Updates

The last command tells X_TRADER to start monitoring the attached instruments using
the specified event settings.

Close the Connection

close(X)

See Also

close | createlnstrument | createNotifier | xtrdr

Related Examples

. “Create an Order Using X_TRADER” on page 1-16

. “Listen for X_TRADER Price Market Depth Updates” on page 3-4
. “Submit X_TRADER Orders” on page 3-8

More About
. “Workflows for Trading Technologies X_TRADER” on page 2-4

3-3

3 Sample Code for Workflows

Listen for X_TRADER Price Market Depth Updates

This example shows how to connect to X_TRADER and turn on event handling for level-
two market data (for example, bid and ask orders in the market for an instrument) and
then create a figure window to display the depth data.

Connect to X_TRADER
X = xtrdr;
Create an Event Notifier

Create an event notifier and enable depth updates. The event notifier is the X_TRADER
mechanism lets you define MATLAB functions to use as callbacks for specific events.

createNotifier(X)
X.InstrNotify(l) .EnableDepthUpdates = 1;

Create an Instrument

createlnstrument(X, "Exchange”, "CME", "Product”, "2F", "ProdType”, "Future®, . ..
"Contract”,"Augl3-,"Alias", "PricelnstrumentDepthUpdate*”)

Attach an Instrument to a Notifier

Assign one or more notifiers to an instrument. A notifier can have one or more
instruments attached to it.

X.InstrNotify(l) .Attachlnstrument(X. Instrument(l))
Define Events

Assign callbacks for validating or invalidating an instrument, and updating the example
order book window.

registerevent(X. InstrNotify(1),{"OnNotifyFound”, ...
@ttinstrumentfound})

registerevent(X. InstrNotify(1),{"OnNotifyNotFound~®, ...
@ttinstrumentnotfound})

registerevent(X. InstrNotify(1),{"OnNotifyDepthData", ...
@ttinstrumentdepthupdate})

Set Up the Figure Window

Set up the figure window to display depth data.
f = figure("Numbertitle®,"off","Tag", "TTPriceUpdateDepthFigure”, ...

Listen for X_TRADER Price Market Depth Updates

“Name®,["Order Book - * X.Instrument(l).Alias])
pos = f_Position;
f_Position = [pos(1l) pos(2) 360 315];
f.Resize = "off";

Create Controls

Create controls for the last price data.

bspc = 5;
bwid = 80;
bhgt = 20;

uicontrol ("Style®, "text","String”, "Exchange”,
"Position”,[bspc 4*bspc+3*bhgt bwid bhgt])
uicontrol ("Style®, "text","String”, "Product”,
"Position”,[2*bspctbwid 4*bspc+3*bhgt bwid bhgt])
uicontrol ("Style”, "text","String”, "Type~", ...
"Position”, [3*bspc+2*bwid 4*bspc+3*bhgt bwid bhgt])
uicontrol ("Style®, "text","String”, "Contract”,
"Position”, [4*bspc+3*bwid 4*bspc+3*bhgt bwid bhgt])
ui.Exchange = uicontrol("Style®, "text","Tag"," ", -.
"Position”,[bspc 3*bspc+2*bhgt led bhgt])
ui.Product = uicontrol("Style”, "text","Tag","", ..
"Position” [2*bspc+bW|d 3*bspc+2*bhgt led bhgt]);
ui.Type = uicontrol("Style”,"text","Tag","", ...
"Position” [3*bSpC+2*bWId 3*bspc+2*bhgt bwid bhgt]);
ui.Contract = uicontrol("Style®, "text","Tag","", -.
"Position”, [4*bspc+3*bwid 3*bspc+2*bhgt bW|d bhgt]);
uicontrol("Style”, "text","String", "Last Price”
"Position”,[bspc 2*bspc+bhgt bwid bhgt])
uicontrol ("Style®, "text","String”, "Last Qty", ...
"Position”,[2*bspctbwid 2*bspc+bhgt bwid bhgt])
uicontrol ("Style®, "text","String”, "Change”,
"Position”, [3*bspc+2*bwid 2*bspc+bhgt bwid bhgt])
ui.Last = uicontrol("Style”, "text","Tag","",---
"Position”,[bspc bspc bwid bhgtl);
ui.Quantity = uicontrol("Style”, "text","Tag","", ...
"Position”,[2*bspc+bwid bspc bwid bhgt]);

ui.Change = uicontrol("Style”, "text","Tag","", .
"Position” [3*bSpC+2*bWId bspc bwid bhgt])

Create a Table

Create a table containing order information.

3-5

3 Sample Code for Workflows

ata(ones(10,4));
uitable("Data”,data, "ColumnName®, . ..
{"Bid", "Bid Size","Ask","Ask Size"},...
"Position”,[5 105 350 205]);

{" "'}
d

Store Data

setappdata(0, "TTOrderBookHandle" ,uibook)
setappdata(0, "TTOrderBookUIData" ,ui)

Listen for Event Data

Listen for event data with depth updates enabled.

X. Instrument(l) .Open(l)

B Order Book - PricelnstrumentDepthUpdate E=REE X

File Edit View Insert Tools Desktop Window Help
Bid Bid Size Ask | AskSize |
1 |46 2055 15
I Exchange Product Type Contract
CHE 2F FUTURE 2F May13
I Last Price Last Qty Change
51 20 5

The last command instructs X_TRADER to start monitoring the attached instruments
using the specified event settings.

Listen for X_TRADER Price Market Depth Updates

Close the Connection

close(X)

See Also

close | createlnstrument | createNotifier | getData | xtrdr

Related Examples

. “Create an Order Using X_TRADER” on page 1-16
. “Listen for X_TRADER Price Updates” on page 3-2
. “Submit X_TRADER Orders” on page 3-8

More About
. “Workflows for Trading Technologies X_TRADER” on page 2-4

3-7

3 Sample Code for Workflows

Submit X_TRADER Orders

This example shows how to connect to X_TRADER and submit orders.

Connect to X_TRADER

X = xtrdr;

Create an Instrument

createlnstrument(X, "Exchange”, "CME", "Product”, "2F", ...
"ProdType*, "Future”, “"Contract”, "Augl3~, ...

"Alias”, "SubmitOrderInstrumentl™)

Register Event Handlers

Register event handlers for the order server. The callback ttorderserverstatus
is assigned to the event OnExchangeStateUpdate to verify that the requested
instrument’s exchange order server is running. Otherwise, no orders can be submitted.

sExchange = X.Instrument.Exchange;
registerevent(X.Gate,{"OnExchangeStateUpdate”, ...
@(varargin)ttorderserverstatus(varargin{:},sExchange)})

Create an Order Set
The OrderSet object sends orders to X_TRADER.
Set properties of the OrderSet object and detail the level of the order status events.

Enable order update and reject (failure) events so you can assign callbacks to handle
these conditions.

createOrderSet(X)
X.0rderSet(1) .EnableOrderRejectData = 1;
X.0rderSet(1) .EnableOrderUpdateData = 1;

X.0rderSet(1) .0rderStatusNotifyMode "ORD_NOTIFY_NORMAL";
Set Position Limit Checks

Set whether the order set checks self-imposed position limits when submitting an order.

X.OrderSet(1).Set("NetLimits",false)

3-8

Submit X_TRADER Orders

Set a Callback Function

Set a callback to handle the OnOrderFilled events. Each time an order is filled (or
partially filled), this callback is invoked.

registerevent(X.OrderSet(1),{"OnOrderFilled", ...
@(varargin)ttorderevent(varargin{:},X)})

Enable Order Submission

You must first enable order submission before you can submit orders to X_TRADER.
X.0rderSet(1) .0pen(1)

Build an Order Profile

Build an order profile using an existing instrument. The order profile contains the
settings that define a submitted order. The valid Set parameters are shown:

orderProfile = createOrderProfile(X);
orderProfile.Instrument = X.Instrument(l);
orderProfile.Customer = "<Default>";
Sample: Create a Market Order

Create a market order to buy 100 shares.

orderProfile.Set("BuySell”, "Buy®)
orderProfile.Set("Qty~,100)
orderProfile.Set("OrderType”,"M")

Sample: Create a Limit Order
Create a limit order by setting the OrderType and limit order price.

orderProfile.Set("OrderType”, L")
orderProfile.Set("Limit$","1270007)

Sample: Create a Stop Market Order
Create a stop market order and set the order restriction to a stop order and a stop price.
orderProfile._Set("OrderType”,"M")

orderProfile._Set("OrderRestr®,"S")
orderProfile.Set("Stop$~, "1298007)

3 Sample Code for Workflows

3-10

Sample: Create a Stop Limit Order

Create a stop limit order and set the order restriction, type, limit price, and stop price.

orderProfile.Set("OrderType”, L")
orderProfile.Set("OrderRestr®,"S")
orderProfile.Set("Limit$","128000")
orderProfile.Set("Stop$~™,"127500")

Check the Order Server Status

Check the order server status before submitting the order and add a counter so the
example doesn’t delay.

nCounter = 1;

while ~exist("bServerUp®,“"var®) && nCounter < 20
pause(1)
nCounter = nCounter + 1;

end

Verify the Order Server Availability

Verify that the exchange’s order server in question is available before submitting the
order.

if exist("bServerUp®,"var®) && bServerUp
submittedQuantity = X.OrderSet(1l).SendOrder(orderProfile);
disp(["Quantity Sent: " num2str(submittedQuantity)])

else
disp("Order Server is down. Unable to submit order*®)

end

Close the Connection

close(X)

See Also

close | createlnstrument | createOrderProfile | createOrderSet | xtrdr

Related Examples
. “Create an Order Using X_TRADER” on page 1-16
. “Listen for X_TRADER Price Updates” on page 3-2

Submit X_TRADER Orders

. “Listen for X_TRADER Price Market Depth Updates” on page 3-4

More About
. “Workflows for Trading Technologies X_TRADER” on page 2-4

3-11

3 Sample Code for Workflows

Create and Manage a Bloomberg EMSX Order

3-12

This example shows how to connect to Bloomberg EMSX, create an order, and interact
with the order.

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.

Connect to Bloomberg EMSX

Connect to the Bloomberg EMSX test service. Display the current event queue contents
using processEvent.

c = emsx("//blp/emapisvc_beta®);
processEvent(c)

CcC =
emsx with properties:

Session: [1x1 com.bloomberglp.blpapi.Session]
Service: [1x1 com.bloomberglp.blpapi.impl._aQ]
Ipaddress: "localhost”
Port: 8194

SessionConnectionUp = {
server = localhost/127.0.0.1:8194
}

SessionStarted = {

}

ServiceOpened = {
serviceName = //blp/emapisvc_beta

¥
MATLAB returns c as the connection to the Bloomberg EMSX test service with the

following:

* Bloomberg EMSX session object

* Bloomberg EMSX service object

+ IP address of the machine running the Bloomberg EMSX test service

+ Port number of the machine running the Bloomberg EMSX test service

Create and Manage a Bloomberg EMSX Order

processEvent displays events associated with connecting to Bloomberg EMSX.
Set Up the Order Subscription

Subscribe to order events using the Bloomberg EMSX connection € associated with these
Bloomberg EMSX fields.

fields = {"EMSX_TICKER","EMSX_AMOUNT", "EMSX_FILL"};

[events,subs] = orders(c,fields)

events =
MSG_TYPE: {"E"}
MSG_SUB_TYPE: {"0"}
EVENT_STATUS: 4
subs =

com.bloomberglp.blpapi.SubscriptionList@4bc3dc78

events contains fields for the events associated with the existing Bloomberg EMSX
orders. subs contains the Bloomberg EMSX subscription list object.

Create the Order

Create an order request structure order for a buy market order of 400 shares of IBM.
Specify the broker as EF1X, use any hand instruction, and set the time in force to DAY.

order .EMSX_ORDER_TYPE = “MKT";
order_EMSX_SIDE = "BUY";

order .EMSX_TICKER = "IBM";
order .EMSX_AMOUNT = int32(400);
order .EMSX_BROKER = "EFIX";

order_EMSX_HAND_INSTRUCTION = “ANY";
order _.EMSX_TIF = "DAY";

Create the order using the Bloomberg EMSX connection ¢ and the order request
structure order.

events = createOrder(c,order)

order_events =

EMSX_SEQUENCE: 354646

3-13

3 Sample Code for Workflows

3-14

MESSAGE: "Order created”

The default event handler processes the events associated with creating the order.
createOrder returns events as a structure that contains these fields:

* Bloomberg EMSX order number
* Bloomberg EMSX message

Modify the Order

Define the structure modorder that contains these fields:

* Bloomberg EMSX order sequence number EMSX_ SEQUENCE
* Bloomberg EMSX ticker symbol EMSX_TICKER
* Bloomberg EMSX number of shares EMSX_AMOUNT

This code modifies order number 354646 for 200 shares of IBM. Convert the numbers to
32-bit signed integers using int32.

modorder .EMSX_SEQUENCE = int32(354646);
modorder .EMSX_TICKER "I1BM";
modorder .EMSX_AMOUNT int32(200);

Modify the order using the Bloomberg EMSX connection ¢ and modify order structure
modorder.

events = modifyOrder(c,modorder)

events =

EMSX_SEQUENCE: 354646
MESSAGE: "Order Modified”

The default event handler processes the events associated with modifying an order.
modifyOrder returns events as a structure that contains these fields:

* Bloomberg EMSX order number
* Bloomberg EMSX message

Delete the Order

Define the structure ordernum that contains the order sequence number 354646 for the
order to delete. Delete the order using the Bloomberg EMSX connection ¢ and the delete
order number structure ordernum.

Create and Manage a Bloomberg EMSX Order

ordernum_EMSX_SEQUENCE = 354646;

events = deleteOrder(c,ordernum)

events =

STATUS: "0O°
MESSAGE: "Order deleted”

The default event handler processes the events associated with deleting an order.
deleteOrder returns events as a structure that contains these fields:

* Bloomberg EMSX status
* Bloomberg EMSX message

Stop the Order Subscription
Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
c.Session.unsubscribe(subs)

Close the Bloomberg EMSX Connection

close(c)

See Also

close | createOrder | deleteOrder | emsx | modifyOrder | orders

Related Examples

. “Create an Order Using Bloomberg EMSX” on page 1-13

. “Create and Manage a Bloomberg EMSX Route” on page 3-16
. “Manage a Bloomberg EMSX Order and Route” on page 3-21

More About
. “Workflow for Bloomberg EMSX” on page 2-2

3-15

3 Sample Code for Workflows

Create and Manage a Bloomberg EMSX Route

3-16

This example shows how to connect to Bloomberg EMSX, set up a route subscription,
create and route an order, and interact with the route.

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.

Connect to Bloomberg EMSX

Connect to the Bloomberg EMSX test service. Display the current event queue contents
using processEvent.

c = emsx("//blp/emapisvc_beta®);
processEvent(c)

CcC =
emsx with properties:

Session: [1x1 com.bloomberglp.blpapi.Session]
Service: [1x1 com.bloomberglp.blpapi.impl._aQ]
Ipaddress: "localhost”
Port: 8194

SessionConnectionUp = {
server = localhost/127.0.0.1:8194
}

SessionStarted = {

}

ServiceOpened = {
serviceName = //blp/emapisvc_beta

¥
MATLAB returns c as the connection to the Bloomberg EMSX test service with the

following:

* Bloomberg EMSX session object

* Bloomberg EMSX service object

+ IP address of the machine running the Bloomberg EMSX test service

+ Port number of the machine running the Bloomberg EMSX test service

Create and Manage a Bloomberg EMSX Route

processEvent displays events associated with connecting to Bloomberg EMSX.
Set Up the Route Subscription

Set up the route subscription for Bloomberg EMSX fields EMSX_BROKER and
EMSX_WORKING using the Bloomberg EMSX connection c. Return the status for existing
routes.

fields = {"EMSX_BROKER", "EMSX_WORKING"};

[events,subs] = routes(c,fields)

events =
MSG_TYPE: {5x1 cell}
MSG_SUB_TYPE: {5x1 cell}
EVENT_STATUS: [5x1 int32]
subs =

com.bloomberglp.blpapi.SubscriptionList@463b9287

events contains fields for the events currently in the event queue. subs contains the
Bloomberg EMSX subscription list object.

Create and Route the Order

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order .EMSX_TICKER = "IBM";

order .EMSX_AMOUNT = int32(100);
order .EMSX_ORDER_TYPE = "MKT";
order_.EMSX_BROKER = "BB~";

order .EMSX_TIF = "DAY";
order.EMSX_HAND_INSTRUCTION = “ANY";
order.EMSX_SIDE = "BUY";

Create and route the order using the Bloomberg EMSX connection ¢ and the order
request structure order.

events = createOrderAndRoute(c,order)

3-17

3 Sample Code for Workflows

3-18

events =

EMSX_SEQUENCE: 335877
EMSX_ROUTE_ID: 1
MESSAGE: "Order created and routed”

The default event handler processes the events associated with creating and routing the
order. createOrderAndRoute returns events as a structure that contains these fields:

* Bloomberg EMSX order number
* Bloomberg EMSX route identifier
+ Bloomberg EMSX message

Modify the Route
Define the modroute structure that contains these fields:

* Bloomberg EMSX order sequence number EMSX_SEQUENCE
* Bloomberg EMSX ticker symbol EMSX_TICKER

* Bloomberg EMSX number of shares EMSX_AMOUNT

* Bloomberg EMSX route identifier EMSX_ROUTE_ 1D

This code modifies the route to 50 shares of IBM for order sequence number 335877 and
route identifier 1. Convert the numbers to 32-bit signed integers using Int32.

modroute .EMSX_SEQUENCE = int32(335877)
modroute .EMSX_TICKER = "IBM";

modroute .EMSX_AMOUNT = int32(50);
modroute.EMSX_ROUTE_ID = int32(1);

Modify the route using the Bloomberg EMSX connection ¢ and modify route request
modroute.

events = modifyRoute(c,modroute)

events =

EMSX_SEQUENCE: 0
EMSX_ROUTE_ID: O
MESSAGE: "Route modified”

The default event handler processes the events associated with modifying a route.
modi fyRoute returns events as a structure that contains these fields:

Create and Manage a Bloomberg EMSX Route

* Bloomberg EMSX order number
* Bloomberg EMSX route identifier
* Bloomberg EMSX message

Delete the Modified Route

Define the structure routenum that contains the order sequence number
EMSX_SEQUENCE and the route number EMSX ROUTE_ ID associated with the modified
route.

0;

0;

routenum.EMSX_SEQUENCE
routenum.EMSX_ROUTE_ID

Delete the route using the Bloomberg EMSX connection ¢ and delete route number
structure routenum.

events = deleteRoute(c, routenum)
events =

STATUS: "1°
MESSAGE: "Route cancellation request sent to broker*®

The default event handler processes the events associated with deleting a route.
deleteRoute returns events as a structure that contains these fields:

+ Bloomberg EMSX status
* Bloomberg EMSX message

Stop the Route Subscription

Unsubscribe from route events using the Bloomberg EMSX subscription list object subs.
c.Session.unsubscribe(subs)

Close the Bloomberg EMSX Connection

close(c)

See Also

close | createOrderAndRoute | deleteRoute | emsx | modifyRoute |
routeOrder | routes

3-19

3 Sample Code for Workflows

Related Examples

. “Create an Order Using Bloomberg EMSX” on page 1-13
. “Create and Manage a Bloomberg EMSX Order” on page 3-12
. “Manage a Bloomberg EMSX Order and Route” on page 3-21

More About
. “Workflow for Bloomberg EMSX” on page 2-2

3-20

Manage a Bloomberg EMSX Order and Route

Manage a Bloomberg EMSX Order and Route

This example shows how to connect to Bloomberg EMSX, set up an order and route
subscription, create and route an order, and interact with the route.

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.

Connect to Bloomberg EMSX

Connect to the Bloomberg EMSX test service. Display the current event queue contents
using processEvent.

c = emsx("//blp/emapisvc_beta®™);
processEvent(c)

CcC =
emsx with properties:

Session: [1x1 com.bloomberglp.blpapi.Session]
Service: [1x1 com.bloomberglp.blpapi.impl._aQ]
Ipaddress: "localhost”
Port: 8194

SessionConnectionUp = {
server = localhost/127.0.0.1:8194
}

SessionStarted = {

}

ServiceOpened = {
serviceName = //blp/emapisvc_beta

}

MATLAB returns ¢ as the connection to the Bloomberg EMSX test service with the
following:

* Bloomberg EMSX session object
* Bloomberg EMSX service object
+ IP address of the machine running the Bloomberg EMSX test service

3-21

3 Sample Code for Workflows

3-22

* Port number of the machine running the Bloomberg EMSX test service
processEvent displays events associated with connecting to Bloomberg EMSX.
Set Up the Order and Route Subscription

Subscribe to order events using the Bloomberg EMSX connection € associated with these
Bloomberg EMSX fields.

fields = {"EMSX_TICKER", "EMSX_AMOUNT ", "EMSX_FILL"};

[events,osubs] = orders(c,fields)

events =
MSG_TYPE: {"E"}
MSG_SUB_TYPE: {"0"}
EVENT_STATUS: 4
osubs =

com.bloomberglp.blpapi.SubscriptionList@4bc3dc78

events contains fields for the events associated with the existing Bloomberg EMSX
orders. osubs contains the Bloomberg EMSX subscription list object.

Subscribe to route events for the Bloomberg EMSX fields EMSX_BROKER and
EMSX_WORKING using the Bloomberg EMSX connection c. Return the status for existing
routes.

fields = {"EMSX_BROKER", "EMSX_WORKING"};

[events,rsubs] = routes(c,fields)

events =
MSG_TYPE: {5x1 cell}
MSG_SUB_TYPE: {5x1 cell}
EVENT_STATUS: [5x1 int32]

rsubs =

com_bloomberglp.blpapi.SubscriptionList@463b9287

Manage a Bloomberg EMSX Order and Route

events contains fields for the events currently in the event queue. rsubs contains the
Bloomberg EMSX subscription list object.

Create and Route the Order

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order .EMSX_TICKER "IBM*";

order .EMSX_AMOUNT = int32(100);
order .EMSX_ORDER_TYPE = “MKT";
order .EMSX_BROKER = "BB";

order .EMSX_TIF = "DAY";

order .EMSX_HAND_INSTRUCTION = "ANY~";
order .EMSX_SIDE = "BUY";

Create and route the order using the Bloomberg EMSX connection ¢ and the order
request structure order.

events = createOrderAndRoute(c,order)

events =

EMSX_SEQUENCE: 335877
EMSX_ROUTE_ID: 1
MESSAGE: "Order created and routed”

The default event handler processes the events associated with creating and routing the
order. createOrderAndRoute returns events as a structure that contains these fields:

* Bloomberg EMSX order number
* Bloomberg EMSX route identifier
+ Bloomberg EMSX message

Modify the Route
Define the modroute structure that contains these fields:

* Bloomberg EMSX order sequence number EMSX SEQUENCE
* Bloomberg EMSX ticker symbol EMSX_TICKER
* Bloomberg EMSX number of shares EMSX_AMOUNT

3-23

3 Sample Code for Workflows

3-24

* Bloomberg EMSX route identifier EMSX_ROUTE_ 1D

This code modifies the route to 50 shares of IBM for order sequence number 335877 and
route identifier 1. Convert the numbers to 32-bit signed integers using Int32.

modroute .EMSX_SEQUENCE = int32(335877)
modroute .EMSX_TICKER = "IBM";

modroute .EMSX_AMOUNT = int32(50);
modroute .EMSX_ROUTE_ID = int32(1);

Modify the route using the Bloomberg EMSX connection ¢ and modify route request
modroute.

events = modifyRoute(c,modroute)

events

EMSX_SEQUENCE: O
EMSX_ROUTE_ID: O
MESSAGE: "Route modified”

The default event handler processes the events associated with modifying a route.
modifyRoute returns events as a structure that contains these fields:

* Bloomberg EMSX order number
* Bloomberg EMSX route identifier
+ Bloomberg EMSX message

Delete the Route

Define the structure routenum that contains the order sequence number
EMSX_SEQUENCE for the routed order and route number EMSX_ROUTE_ ID.

routenum.EMSX_SEQUENCE
routenum.EMSX_ROUTE_ID

0;

0;

Delete the route using the Bloomberg EMSX connection ¢ and delete route number
structure routenum.

events = deleteRoute(c, routenum)

events =

STATUS: *"1°

Manage a Bloomberg EMSX Order and Route

MESSAGE: "Route cancellation request sent to broker*®

The default event handler processes the events associated with deleting a route.
deleteRoute returns events as a structure that contains these fields:

+ Bloomberg EMSX status
* Bloomberg EMSX message

Stop the Order and Route Subscription

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX Connection

close(c)

See Also

close | createOrderAndRoute | deleteRoute | emsx | modifyRoute | orders |
routes

Related Examples

. “Create an Order Using Bloomberg EMSX” on page 1-13

. “Create and Manage a Bloomberg EMSX Order” on page 3-12
. “Create and Manage a Bloomberg EMSX Route” on page 3-16

More About
. “Workflow for Bloomberg EMSX” on page 2-2

3-25

3 Sample Code for Workflows

Create and Manage an Interactive Brokers Order

This example shows how to connect to the IB Trader Workstation, request open

order data, create an IB Trader Workstation 1Contract object, create an IB Trader
Workstation 10rder object, and execute the order. For details about the IContract and
10rder objects, see Interactive Brokers API Reference Guide.

This example uses the sample event handler function ibExampleOrderEventHandler
to populate an order blotter figure with Interactive Brokers order information. Use this
event handler or write a custom event handler function. For details, see “Writing and
Running Custom Event Handler Functions with Interactive Brokers” on page 1-26.

To access the code for this example, see 1BOrderWorkflow.m.

Connect to the IB Trader Workstation

Connect to the IB Trader Workstation and create connection ib using the local host and
port number 7496.

ib = ibtws("",7496);
Create an Example Order Blotter
Create an example order blotter that the event handler populates.

This MATLAB code creates a MATLAB figure to contain the Interactive Brokers order
information.

f = findobj("Tag”, "1BOrderBlotter™);
it isempty(f)
f = figure("Tag", "IBOrderBlotter”, "MenuBar", "none”, .. .
“NumberTitle", "off","Name", " IB Order Blotter™)
pos = f.Position;
f.Position = [pos(1l) pos(2) 687 335];
colnames = {"Status”,"Filled", "Remaining”, Avg Fill Price","1d",
"Parent 1d","Last Fill Price”,"Client 1d","Why Held"};
data = cell(15,9);
uitable(f, "Data”,data, "RowName”, [], "ColumnName*,colnames, . ..
“Position”,[10 30 677 300],"Tag", "OrderDataTable™)
uicontrol ("Style”, "text", "Position”,[10 5 592 20], ...
"Tag", "1BOrderMessage™)
uicontrol ("Style”, "pushbutton”, "String”,"Close”, . ..
“Callback”,"evalin(""base" ", ""close(ib);close(findobj(""""Tag" """, """ "1BOrderBlotter*"""));"")",
“Position”,[607 5 80 20])
end

MATLAB displays the IB Order Blotter.

3-26

http://www.interactivebrokers.com/en/software/api/api.htm

Create and Manage an Interactive Brokers Order

T‘T 1B Order Blotter EI@
Status Filled Remaining | Avg Fill Price Id ParentId | LastFill Price| ClientId Why Held
Request Open Order Data

Request information for all open orders using only this client and the sample event
handler ibExampleOrderEventHandler.

o0 = orders(ib,true,@ibExampleOrderEventHandler);

0 is an empty double because ibExampleOrderEventHandler displays the data for all
open orders in the IB Order Blotter.

3-27

3 Sample Code for Workflows

FJ_\‘ 1B Order Blotter EI@
Status Filled Remaining | Avg Fill Price Id ParentId | LastFill Price| ClientId Why Held
Submitted 380774580 0 0

Create the IB Trader Workstation 1Contract and 10rder Objects

Create the IB Trader Workstation 1Contract object ibContract. Here, this object
describes a security with these property values:

* XYZ symbol

+ Stock security type

+ Aggregate exchange

+ USD currency

ibContract = ib.Handle.createContract;

ibContract.symbol = "XYZ*;

ibContract.secType = °“STK";

ibContract.exchange "SMART " ;
ibContract.currency "UsD*

ibContract =
Interface.Tws_ActiveX Control _module.lContract

ibContract contains the stock symbol, security type, exchange, and currency, for
security XYZ.

3-28

Create and Manage an Interactive Brokers Order

Create the IB Trader Workstation 10rder object ibOrder for a buy market order for two
shares.

ibOrder = ib.Handle.createOrder;
ibOrder.action = "BUY";
ibOrder.totalQuantity = 2;
ibOrder.orderType = "MKT"
ibOrder =
Interface.Tws_ActiveX_ Control_module.lOrder
ibOrder contains the action, total quantity, and order type.

Create the Interactive Brokers Order

Obtain the next valid order identification number using IB Trader Workstation
connection ib.

id = orderid(ib);

Execute the buy market order for two shares using the unique order identifier id and
sample event handler ibExampleOrderEventHandler.

createOrder(ib, ibContract, ibOrder, id,@ibExampleOrderEventHandler)

MATLAB displays order information in the IB Order Blotter. The IB Order Blotter shows
the open order and the filled order.

3-29

3 Sample Code for Workflows

4] 1B Order Blotter EI@
Status Filled Remaining | Avg Fill Price Id ParentId | LastFill Price| ClientId Why Held
Submitted 380774580 0 0
Filled 2 0 7.6300 380774590 0 7.6300 0
Close

Cancel the Interactive Brokers Order

ib.Handle.cancelOrder(id)

After canceling the existing order, create a new order by modifying the IB Trader
Workstation 10rder object ibOrder. Then, create the order by executing createOrder.

Cancel all open Interactive Brokers orders.
ib.Handle.reqGlobalCancel

This method cancels all open Interactive Brokers orders globally. The order is canceled
despite where it is created.

Close the Connection

Close the IB Trader Workstation connection ib.

close(ib)

See Also

close | createOrder | getdata | history | ibtws | orderid | orders |
timeseries

3-30

Create and Manage an Interactive Brokers Order

Related Examples
. “Create an Order Using IB Trader Workstation” on page 1-7

. “Create Interactive Brokers Combination Order” on page 3-39
. “Request Interactive Brokers Historical Data” on page 3-32

. “Request Interactive Brokers Real-Time Data” on page 3-35

More About

. “Workflow for Interactive Brokers” on page 2-6

“Writing and Running Custom Event Handler Functions with Interactive Brokers”
on page 1-26

External Websites

. Interactive Brokers API Reference Guide

3-31

http://www.interactivebrokers.com/en/software/api/api.htm

3 Sample Code for Workflows

Request Interactive Brokers Historical Data

3-32

This example shows how to connect to the IB Trader Workstation, create an IB Trader
Workstation 1Contract object, and request historical data. For details about the
IContract object, see Interactive Brokers API Reference Guide. To access the code for
this example, see 1BHistoricalDataWorkflow.m.

Connect to the IB Trader Workstation and Create the 1Contract Object

Connect to the IB Trader Workstation and create connection ib using the local host and
port number 7496.

ib = ibtws("",7496);

MATLAB returns b as the connection to the IB Trader Workstation with the Interactive
Brokers ActiveX® object, the local host, and the port number that you choose.

Create the IB Trader Workstation 1Contract object ibContract. Here, this object
describes a security with these property values:

* XYZ symbol

* Stock security type

+ Aggregate exchange

+ USD currency

ibContract = ib.Handle.createContract;
ibContract.symbol = "XYZ";
ibContract.secType = "STK";

ibContract.exchange "SMART " ;
ibContract.currency "UsD*

ibContract =
Interface.Tws_ActiveX_ Control_module. IContract

ibContract contains the stock symbol, security type, exchange, and currency for
security XYZ.

Request Interactive Brokers Historical Data

Request the last 5 days of historical data using ibContract.

http://www.interactivebrokers.com/en/software/api/api.htm

Request Interactive Brokers Historical Data

startdate = floor(nhow) - 5;
enddate = floor(now);

d = history(ib, ibContract,startdate,enddate)

d =

1.0e+05 *

7.3534 0.0079 0.0080 0.0078 0.0078 0.2386 0.1727 0.0079 0
7.3534 0.0078 0.0080 0.0078 0.0079 0.1669 0.1075 0.0079 0
7.3534 0.0079 0.0079 0.0078 0.0078 0.1982 0.1420 0.0078 0
7.3534 0.0079 0.0080 0.0076 0.0078 0.3188 0.2239 0.0077 0
7.3534 0.0078 0.0080 0.0077 0.0080 0.5568 0.3723 0.0079 0

d contains the historical data for 5 days.
Each row of d contains historical data for 1 day. The columns in matrix d are:

+ Numeric representation of a date
* Open price

* High price

* Low price

+ Close price

* Volume

* Bar count

+ Weighted average price

+ Flag indicating if there are gaps in the bar
Close the Connection

Close the IB Trader Workstation connection ib.
close(ib)

See Also

close | createOrder | getdata | history | ibtws | timeseries

Related Examples
. “Create an Order Using IB Trader Workstation” on page 1-7
. “Create Interactive Brokers Combination Order” on page 3-39

. “Create and Manage an Interactive Brokers Order” on page 3-26

3-33

3 Sample Code for Workflows

. “Request Interactive Brokers Real-Time Data” on page 3-35
More About
. “Workflow for Interactive Brokers” on page 2-6

External Websites
. Interactive Brokers API Reference Guide

3-34

http://www.interactivebrokers.com/en/software/api/api.htm

Request Interactive Brokers Real-Time Data

Request Interactive Brokers Real-Time Data

This example shows how to connect to the IB Trader Workstation, create IB Trader
Workstation IContract objects, and request real-time data. For details about the
IContract object, see Interactive Brokers API Reference Guide.

This example uses the sample event handler function

ibExampleReal timeEventHandler to handle events associated with requesting real-
time data. Use this event handler or write a custom event handler function. For details,
see “Writing and Running Custom Event Handler Functions with Interactive Brokers” on
page 1-26.

To access the code for this example, see IBStreamingDataWorkflow.m.
Connect to the IB Trader Workstation and Create the Real-Time Data Display Figure

Connect to the IB Trader Workstation and create connection ib using the local host and
port number 7496.

ib = ibtws("",7496);

MATLAB returns b as the connection to the IB Trader Workstation with the Interactive
Brokers ActiveX object, the local host, and the port number that you choose.

Create an example figure to display real-time data.

This MATLAB code creates a MATLAB figure to contain the Interactive Brokers real-
time data.

f = findobj("Tag", " IBStreamingDataWorkflow®™);
it isempty(f)
f = figure("Tag", " IBStreamingDataWorkflow", "MenuBar*®, "none™, ...
“NumberTitle®, "off")
pos = f.Position;
f.Position = [pos(1l) pos(2) pos(3)+37 109];
colnames = {"Trade","Size","Bid", "BidSize", "Ask", "AskSize", ...
"Total Volume~®};
rownames = {"AAA","BBB","DDDD"};
data = cell(3,6);
uitable(f, "Data”,data, "RowName” , rownames, "ColumnName*,colnames, ...
“Position”,[10 30 582 76],"Tag", "SecurityDataTable™)
uicontrol ("Style”, "text", "Position”,[10 5 497 20],"Tag", " IBMessage")
uicontrol ("Style”, "pushbutton®, "String”, "Close”, . ..

“Callback", ...
“evalin(""base"", " "close(ib);close(findobj(""""Tag""""," """ IBStreamingDataWorkflow""""));"")",
“Position”,[512 5 80 20])

end

MATLAB displays the empty figure.

3-35

http://www.interactivebrokers.com/en/software/api/api.htm

3 Sample Code for Workflows

] = | B S |
Trade Size Bid BidSize Ask AskSize | Total Volume
AAA
BEB
oooD
| %

Create IB Trader Workstation 1Contract Obijects

Create the IB Trader Workstation 1Contract object for the first security. Here, this
object describes a security with these property values:

* AAA symbol

+ Stock security type
+ Aggregate exchange
* USD currency

ibContractl = ib.Handle.createContract;
ibContractl.symbol = "AAA";
ibContractl.secType = "STK";
ibContractl.exchange "SMART" ;
ibContractl.currency "USD";

Create the IB Trader Workstation 1Contract object for the second security symbol BBB.

ibContract2 = ib.Handle.createContract;
ibContract2._.symbol = "BBB-";
ibContract2._secType = “STK";
ibContract2._exchange "SMART " ;
ibContract2.currency "UsSD*";

Create the IB Trader Workstation 1Contract object for the third security symbol DDDD.

ibContract3 = ib.Handle.createContract;
ibContract3.symbol = "DDDD";
ibContract3.secType = "STK";
ibContract3._exchange "SMART " ;
ibContract3.currency "USD*;

Display the data in the symbol property of ibContractl.

ibContractl._symbol

3-36

Request Interactive Brokers Real-Time Data

ans =
AAA

Request real-time data for the three securities. Set F to 100 to retrieve the

Option Volume tick type. For details about other generic market data tick types,

see Interactive Brokers API Reference Guide. Use the sample event handler
ibExampleReal timeEventHandler to process the real-time data events or write a
custom event handler function.

contracts = {ibContractl;ibContract2;ibContract3};
f = "100";

tickerlID = realtime(ib,contracts,f, ...
@(varargin) ibExampleRealtimeEventHandler(varargin{:}));

MATLAB displays the figure populated with real-time data for stock symbols AAA, BBB,
and DDDD.

-
o S|
Trade Size Bid BidSize Ask AskSize | Total Volume
AAA TE7.3300 1 787 1 TE7.2000 1 306
BEB 28.3100 & 28.3100 1 28.3100 41 37
ooooD 232300 1 231700 4 23.3500 10 123

Close the Connection

Close the IB Trader Workstation connection ib.

close(ib)

See Also

close | createOrder | getdata | history | ibtws | timeseries

Related Examples
. “Create an Order Using IB Trader Workstation” on page 1-7

. “Create Interactive Brokers Combination Order” on page 3-39

3-37

http://www.interactivebrokers.com/en/software/api/api.htm

3 Sample Code for Workflows

. “Create and Manage an Interactive Brokers Order” on page 3-26

. “Request Interactive Brokers Historical Data” on page 3-32

More About

. “Workflow for Interactive Brokers” on page 2-6

. “Writing and Running Custom Event Handler Functions with Interactive Brokers”
on page 1-26

External Websites
. Interactive Brokers API Reference Guide

3-38

http://www.interactivebrokers.com/en/software/api/api.htm

Create Interactive Brokers Combination Order

Create Interactive Brokers Combination Order

This example shows how to connect to the IB Trader Workstation, create IB Trader
Workstation IContract and ICombolLegList objects, and create a combination order
for a calendar spread. A calendar spread is one of many combination order strategies.
This strategy takes advantage of different stock option expiration dates. This example

creates a buy order on a calendar spread for Google®. For details about I1Contract
objects, 1ComboLegL ist objects, and combination orders, see Interactive Brokers API
Reference Guide.

This example uses the sample event handler function ibExampleEventHandler to
handle events associated with creating a combination order. Use this event handler or
write a custom event handler function. For details, see “Writing and Running Custom
Event Handler Functions with Interactive Brokers” on page 1-26.

To access the code for this example, see IBCombinationOrder.m.

Connect to the IB Trader Workstation

Connect to the IB Trader Workstation and create connection ib using the local host and
port number 7496.

ib = ibtws("",7496);

MATLAB returns ib as the connection to the IB Trader Workstation with the Interactive
Brokers ActiveX object, the local host, and the port number that you choose.

Create IB Trader Workstation 1Contract Objects

Create the IB Trader Workstation 1Contract object ibContractl. Here, this object
describes the first call option in the calendar spread. Create an 1Contract object with
these property values:

* Google symbol.

* Stock option.

+ Expiry date is August 2014,

+ Strike price is $535.00.

+ Call option.

* Number of shares is 100.

3-39

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

3 Sample Code for Workflows

+ Aggregate exchange.
+ USD currency.

ibContractl = ib.Handle.createContract;
ibContractl._symbol = "GOOG";
ibContractl._secType = "OPT";
ibContractl._expiry "201408";
ibContractl.strike 535;
ibContractl._right = "C";
ibContractl_multiplier = "100°;
ibContractl._exchange "SMART " ;
ibContractl.currency "USD*;

Request contract details for ibContractl.

[cdl,ibContractIDl] = contractdetails(ib, ibContractl);

cdl returns the contract details data for ibContractl. ibContractlID1 returns the
request identifier for this contract details request.

Create the IB Trader Workstation 1Contract object ibContract2. Here, this object
describes the second call option in the calendar spread. Create an 1Contract object with
these property values:

* Google symbol.

* Stock option.

+ Expiry date is September 2014.
+ Strike price is $535.00.

+ Call option.

* Number of shares is 100.

+ Aggregate exchange.

+ USD currency.

ibContract2 = ib.Handle.createContract;
ibContract2._.symbol = "GOOG";
ibContract2._secType = "OPT";
ibContract2_expiry "201409";
ibContract2.strike 535;
ibContract2._right = "C";

ibContract2_multiplier = "100°;
ibContract2._exchange = "SMART";

3-40

Create Interactive Brokers Combination Order

ibContract2._currency = "USD";

Request contract details for ibContract2.

[cd2, ibContractlD2] = contractdetails(ib, ibContract?2);

cd2 returns the contract details data for ibContractl2. ibContractlID2 returns the
request identifier for this contract details request.

Create IB Trader Workstation 1ComboLegL ist Object

Create the IB Trader Workstation 1ComboLegList object combolLegs to define the legs
of the combination order.

comboLegs = ib.Handle.createCombolLegList;

Here, this combination order has two legs. Add the first leg to combolLegs. The first leg
contains these property values:

* IB Trader Workstation IContract object ibContractl.

* One-to-one leg ratio.

+ Sell the call option.

+ Aggregate exchange.

* Identify an open or close order based on the parent security.

+ IB Trader Workstation routes the order without a designated broker.

* Blank designated broker.

ibLegl = combolLegs.Add;
ibLegl.conld = ibContractiDl;
ibLegl.ratio = 1;

ibLegl.action = "SELL";
ibLegl.exchange ="SMART";
ibLegl.openClose = 0;
ibLegl.shortSaleSlot = 0;
ibLegl.designatedLocation = " 7;

Add the second leg to combolLegs. The second leg contains these property values:

+ IB Trader Workstation IContract object ibContract2.
* One-to-one leg ratio.

* Buy the call option.

3-41

3 Sample Code for Workflows

3-42

+ Aggregate exchange.
+ Identify an open or close order based on the parent security.
* IB Trader Workstation routes the order without a designated broker.

* Blank designated broker.

ibLeg2 = combolLegs.Add;
ibLeg2.conld = ibContractlD2;
ibLeg2.ratio = 1;
ibLeg2.action = "BUY";
ibLeg2.exchange ="SMART";
ibLeg2.openClose = 0;
ibLeg2.shortSaleSlot = 0;
ibLeg2.designatedLocation = "7;

Create the Interactive Brokers Combination Order

Create the IB Trader Workstation 1Contract object orderContract for the
combination order. Create an IContract object with these property values:

* Google symbol

* Combination order type BAG

+ Aggregate exchange

* USD currency

+ IB Trader Workstation 1ComboLegList object combolLegs
orderContract = ib.Handle.createContract;
orderContract.symbol = "GO0G";

orderContract.secType = "BAG";

orderContract.exchange "SMART " ;

orderContract.currency = “USD";
orderContract.combolLegs = combolLegs;

Create the IB Trader Workstation 10rder object ibOrder. Here, the combination order
is a market order to buy one combination of the two legs.

ibOrder = ib.Handle.createOrder;
ibOrder.action = "BUY";
ibOrder._totalQuantity = 1;
ibOrder.orderType = "MKT";

Request the next valid order identification number id using orderid.

Create Interactive Brokers Combination Order

id = orderid(ib);
Execute the combination order ibOrder using these arguments:

+ IB Trader Workstation connection ib

* Combination order IContract object orderContract
+ IB Trader Workstation 10rder object ibOrder

* Order identifier id

+ Sample event handler ibExampleEventHandler

o
1

createOrder(ib,orderContract, ibOrder, id,@ibExampleEventHandler)

768413.00
d returns the unique order identifier for this combination order.
Close the Connection

Close the IB Trader Workstation connection ib.

close(ib)

See Also

close | contractdetails | createOrder | ibtws | orderid

Related Examples
. “Create an Order Using IB Trader Workstation” on page 1-7

. “Create and Manage an Interactive Brokers Order” on page 3-26

. “Request Interactive Brokers Historical Data” on page 3-32

. “Request Interactive Brokers Real-Time Data” on page 3-35

More About

. “Workflow for Interactive Brokers” on page 2-6

. “Writing and Running Custom Event Handler Functions with Interactive Brokers”
on page 1-26

3-43

3 Sample Code for Workflows

External Websites

. Interactive Brokers API Reference Guide

3-44

http://www.interactivebrokers.com/en/software/api/api.htm

Create CQG Orders

Create CQG Orders

This example shows how to connect to CQG, define the event handlers, subscribe to the
security, define the account handle, and submit orders for execution.

Create the CQG Connection

Create the CQG connection object using cqg.
c = cq9;

Define Event Handlers

Register the sample event handler cqgconnectioneventhandler to track events
associated with the connection status.

eventNames = {"CELStarted”, "DataError”,"IsReady”, ...
"DataConnectionStatusChanged”, ...
"GWConnectionStatusChanged®, . ..
"GWEnvironmentChanged~”};

for i1 = 1:length(eventNames)

registerevent(c.Handle,{eventNames{i}, - ..

@(varargin)cggconnectioneventhandler(varargin{:})})

end

cqgconnectioneventhandler is assigned to the events in eventNames.

Set the API configuration properties. For example, to set the time zone to Eastern Time,
enter the following.

c.APIConfig.TimeZoneCode = "“tzEastern~;

c.APIConfigis a CQG configuration object. For details about setting API configuration
properties, see CQG API Reference Guide.

Establish the connection to CQG.
startUp(c)
CELStarted

DataConnectionStatusChanged
GWConnectionStatusChanged

The connection event handler displays event names for a successful CQG connection.

3-45

3 Sample Code for Workflows

3-46

Register an event handler to track events associated with a CQG instrument
subscription.

streamEventNames = {" InstrumentSubscribed”, " InstrumentChanged”, ...
"IncorrectSymbol "};
for i = 1:length(streamEventNames)
registerevent(c.Handle,{streamEventNames{i}, ...
@(varargin)cqgrealtimeeventhandler(varargin{:})})
end

Register an event handler to track events associated with a CQG order and account.

orderEventNames = {"AccountChanged”, "OrderChanged”, "AllOrdersCanceled"};
for i = 1l:length(orderEventNames)
registerevent(c.Handle,{orderEventNames{i}, ...
@(varargin)cqgordereventhandler(varargin{:})})
end

Subscribe to the CQG Instrument

With the connection established, subscribe to the CQG instrument. The instrument

must be successfully subscribed first before it is available for transactions. You must
format the instrument name in the CQG long symbol view. For example, to subscribe to a
security tied to the EURIBOR, enter the following.

realtime(c, "F.US_IE")
pause(2)

F.US.1EK13 subscribed

pause causes MATLAB to wait 2 seconds before continuing to give time for CQG to
subscribe to the instrument.

Create the CQG instrument object.

To use the instrument in createOrder, import the name of the instrument
cqglnstrumentName into the current MATLAB workspace. Then, create the
CQGInstrument object cqglnst.

cqglnstrumentName = evalin("base”, “"cqglnstrument®);
cqglnst = c.Handle.Instruments. ltem(cqglnstrumentName);

Set Up Account Credentials

Set the CQG flags to enable account information retrieval.

Create CQG Orders

set(c-Handle, "AccountSubscriptionLevel ", "asINone®)
set(c.Handle, "AccountSubscriptionLevel ", "aslAccountUpdatesAndOrders®)
pause(2)

ans =
AccountChanged

The CQG API shows that account information changed.
Set up the CQG account credentials.

Retrieve the CQGAccount object into accountHandle to use your account information in
createOrder. For details about creating a CQGAccount object, see CQG API Reference
Guide.

accountHandle = c.Handle.Accounts. ItemBylIndex(0);
Create CQG Market, Limit, Stop, and Stop Limit Orders

Create a market order that buys one share of the subscribed security cqglnst using the
account credentials accountHandle.

quantity = 1;

oMarket = createOrder(c,cqglnst,1l,accountHandle,quantity);
oMarket.Place

ans =
OrderChanged

The CQGOrder object oMarket contains the order. The CQG API executes the market
order using the CQG API function Place. After execution, the order status changes.

To use a string for the security, subscribe to the security "EZC" as shown above. Then,
create a market order that buys one share of the security "EZC" using the defined
account credentials accountHandle.

cqglnstrumentName = "EZC*";
quantity = 1;

oMarket = createOrder(c,cqglnstrumentName,1l,accountHandle,quantity);
oMarket_Place

ans =

3-47

3 Sample Code for Workflows

3-48

OrderChanged

The CQGOrder object oMarket contains the order. The CQG API executes the market
order using the CQG API function Place. After execution, the order status changes.

To create a limit order, you can use the bid price. Extract the CQG bid object qtBid
from the previously defined CQGInstrument object cqglnst. For details about the
CQGInstrument object, see CQG API Reference Guide.

qtBid = cqglnst.get("Bid");

Create a limit order that buys one share of the previously subscribed security cqglnst
using the previously defined account credentials accountHandle and qtBid for the
limit price.

quantity = 1;
limitprice = qtBid.get("Price");

oLimit = createOrder(c,cqglnst,2,accountHandle,quantity, limitprice);
oLimit.Place

ans =
OrderChanged

The CQGOrder object oLimit contains the order. The CQG API executes the limit order
using the CQG API function Place. After execution, the order status changes.

To create a stop order, you can use the trade price. Extract the CQG trade object
gtTrade from the previously defined CQGInstrument object cqglnst.

qtTrade = cqglnst.get("Trade®);

Create a stop order that buys one share of the previously subscribed security cqglnst
using the previously defined account credentials accountHandle and gqtTrade for the
stop price.

quantity = 1;
stopprice = qtTrade.get("Price");

oStop = createOrder(c,cqglnst,3,accountHandle,quantity,stopprice);
oStop.-Place

ans =
OrderChanged

Create CQG Orders

The CQGOrder object 0Stop contains the order. The CQG API executes the stop order
using the CQG API function Place. After execution, the order status changes.

To create a stop limit order, use both the bid and trade prices defined above. Create a
stop limit order that buys one share of the subscribed security cqglnst using the defined
account credentials accountHandle.

quantity = 1;
oStopLimit = createOrder(c,cqglnst,4,accountHandle,quantity,...
limitprice,stopprice);

oStopLimit.Place

ans =
OrderChanged

The CQGOrder object oStopLimit contains the order. The CQG API executes the stop
limit order using the CQG API function Place. After execution, the order status changes.

Close the CQG Connection

shutDown(c)

See Also

close | cqg | createOrder | history | realtime | shutDown | startUp |
timeseries

Related Examples

. “Create an Order Using CQG” on page 1-11

. “Request CQG Historical Data” on page 3-50

. “Request CQG Real-Time Data” on page 3-57

. “Request CQG Intraday Tick Data” on page 3-53

More About
. “Workflow for CQG” on page 2-8

External Websites
. CQG API Reference Guide

3-49

http://partners.cqg.com/api-resources/technical-documentation

3 Sample Code for Workflows

Request CQG Historical Data

3-50

This example shows how to connect to CQG, define event handlers, and request historical
data.

Connect to CQG

Create the CQG connection object using cqg.
C = cqg;

Define Event Handlers

Register the sample event handler cqgconnectioneventhandler to track events
associated with connection status.

eventNames = {"CELStarted”, "DataError”,"IsReady”, ...
"DataConnectionStatusChanged”};
for i1 = 1:length(eventNames)
registerevent(c.Handle,{eventNames{i}, - ..
@(varargin)cggconnectioneventhandler(varargin{:})})
end

cqgconnectioneventhandler is assigned to the events in eventNames.

Set the API configuration properties. For example, to set the time zone to Eastern Time,
enter the following.

c.APIConfig.TimeZoneCode = "tzEastern”;

c.APIConfigis a CQG configuration object. For details about setting API configuration
properties, see CQG API Reference Guide.

Create the CQG connection.
startUp(c)

CELStarted
DataConnectionStatusChanged

The connection event handler displays event names for a successful CQG connection.

Register an event handler to build and initialize the output data matrix
cqgHistoryData.

Request CQG Historical Data

histEventNames = {"ExpressionResolved”, "ExpressionAdded”, ...
"ExpressionUpdated®};
for 1 = 1l:length(histEventNames)
registerevent(c.Handle,{histEventNames{i}, - -.
@(varargin)cggexpressioneventhandler(varargin{:})})
end

Pass an Additional Optional Request Property

Pass an additional optional request property by creating the structure X and setting the
optional property.

X.UpdatesEnabled = false;
For additional optional properties you can set, see CQG API Reference Guide.
Request CQG Historical Data

Request daily data for instrument XYZ . XYZ for the last 10 days using the additional
optional request property X.

instrument = "XYZ_XYZ";

startdate = floor(nhow) - 10;

enddate = floor(now);

period = “hpDaily”;

history(c, instrument,startdate,enddate,period,Xx)

MATLAB writes the variable cqgHistoryData to the Workspace browser.

Display cqgHistoryData.

cqgHistoryData

cqgHistoryData =
1.0e+05 *
7.3533 0.0063 0.0063
7.3533 0.0064 0.0064
7.3533 0.0065 0.0065
7.3534 0.0065 0.0065
7.3534 0.0066 0.0066
7.3534 0.0065 0.0065
7.3534 0.0066 0.0066
7.3534 0.0066 0.0066
7.3534 0.0064 0.0064

3-51

3 Sample Code for Workflows

3-52

Each row in cqgHistoryData represents data for 1 day. The columns in
cqgHistoryData show the numerical representation of the timestamp, the close price,
and the open price for the instrument during the day.

Close the CQG Connection

close(c)

See Also

close | cqg | createOrder | history | realtime | shutDown | startUp |
timeseries

Related Examples

. “Create an Order Using CQG” on page 1-11

. “Create CQG Orders” on page 3-45

. “Request CQG Real-Time Data” on page 3-57

. “Request CQG Intraday Tick Data” on page 3-53

More About
. “Workflow for CQG” on page 2-8

External Websites
. CQG API Reference Guide

http://partners.cqg.com/api-resources/technical-documentation

Request CQG Intraday Tick Data

Request CQG Intraday Tick Data

This example shows how to connect to CQG, define event handlers, and request intraday
and timed bar data.

Connect to CQG and Define Event Handlers
Create the CQG connection object using cqg.
c = cq9;

Register the sample event handler cqgconnectioneventhandler to track events
associated with the connection status.

eventNames = {"CELStarted”, "DataError”, "IsReady”, ...
"DataConnectionStatusChanged”};
for i = 1:length(eventNames)
registerevent(c.Handle,{eventNames{i}, ...
@(varargin)cqgconnectioneventhandler(varargin{:})})
end

cqgconnectioneventhandler is assigned to the events in eventNames.

Set the API configuration properties. For example, to set the time zone to Eastern Time,
enter the following.

c.APIConfig.TimeZoneCode = "“tzEastern~;

c.APIConfigis a CQG configuration object. For details about setting API configuration
properties, see CQG API Reference Guide.

Create the CQG connection.
startUp(c)

CELStarted
DataConnectionStatusChanged

The connection event handler displays event names for a successful CQG connection.

Register an event handler to build and initialize the output data structure cqgTickData
used for storing intraday tick data.

rawEventNames = {"TicksResolved®, "TicksAdded"};

3-53

3 Sample Code for Workflows

3-54

for 1 = 1:length(rawEventNames)
registerevent(c.Handle,{rawEventNames{i}, - - .
@(varargin)cqgintradayeventhandler(varargin{:})})
end

Request CQG Intraday Tick Data

Pass an additional optional request property by creating the structure X, and setting the
optional property. To see only bid tick data, for example, set TickFilter to "tfBid".

x.TickFilter = “"tfBid";

TickFilter and SessionsFilter are the only valid additional optional properties for

calling timeseries without a timed bar request. For additional property values you can
set, see CQG API Reference Guide.

Request intraday tick data for instrument XYZ.XYZ for the last 2 days using the
additional optional request property X.

instrument = "XYZ_XYZ";
startdate = now - 2;
enddate = now;

timeseries(c, instrument,startdate,enddate, [],x)
pause(1)

pause causes MATLAB to wait 1 second before continuing to give time for CQG
to subscribe to the instrument. MATLAB writes the variable cqgTickData to the
Workspace browser.

Display cqgTickData.
cqgTickData

cqgTickData =
Timestamp: {2x1 cell}
Price: [2x1 double]
Volume: [2x1 double]
PriceType: {2x1 cell}
CorrectionType: {2x1 cell}
SalesConditionLabel: {2x1 cell}
SalesConditionCode: [2x1 double]
Contributorld: {2x1 cell}
ContributorldCode: [2x1 double]

Request CQG Intraday Tick Data

MarketState: {2x1 cell}

Display data in the Timestamp property of cqgTickData.
cqgTickData.Timestamp

ans =
"4/17/2013 2:14:00 PM*
"4/18/2013 2:14:00 PM*

Request CQG Timed Bar Data

Register an event handler to build and initialize the output data matrix
cqgTimedBarData used for storing timed bar data.

aggEventNames = {"TimedBarsResolved®, "TimedBarsAdded”,
"TimedBarsUpdated®, "TimedBarslInserted”,
"TimedBarsRemoved"};
for i = 1:length(aggEventNames)
registerevent(c.Handle,{aggEventNames{i}, - ..
@(varargin)cqgintradayeventhandler(varargin{:})})
end

Pass additional optional request properties by creating the structure X, and setting the
optional property.

X.UpdatesEnabled = false;

Request timed bar data for instrument XYZ.XYZ for the last fraction of a day using the
additional optional request property X.

instrument = "XYZ_XYZ";
startdate = now - .1;
enddate = now;

intraday = 1;

timeseries(c, instrument,startdate,enddate, intraday, x)
pause(1)

MATLAB writes the variable cqgTimedBarData to the Workspace browser.

Display cqgTimedBarData.

cqgTimedBarData

cqgTimedBarData =

3-55

3 Sample Code for Workflows

1.0e+09 *

0.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
0.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
0.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
0.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
0.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475

cqgTimedBarData returns timed bar data for the specified instrument. The columns of
cqgTimedBarData display data corresponding to the timestamp, open price, high price,
low price, close price, mid-price, HLC3, average price, and tick volume.

Close the CQG Connection

close(c)

See Also

close | cqg | createOrder | history | realtime | shutDown | startUp |
timeseries

Related Examples

. “Create an Order Using CQG” on page 1-11

. “Create CQG Orders” on page 3-45

. “Request CQG Historical Data” on page 3-50
. “Request CQG Real-Time Data” on page 3-57

More About
. “Workflow for CQG” on page 2-8

External Websites
. CQG API Reference Guide

3-56

http://partners.cqg.com/api-resources/technical-documentation

Request CQG Real-Time Data

Request CQG Real-Time Data

This example shows how to connect to CQG, define event handlers, and request current
data.

Connect to CQG

Create the CQG connection object using cqg.
c = cqg;
Define Event Handlers

Register the sample event handler cqgconnectioneventhandler to track events for
the connection status.
eventNames = {"CELStarted", "DataError”, "IsReady”,
"DataConnectionStatusChanged”, "GWConnectionStatusChanged”,
"GWEnvironmentChanged®};
for i = 1:length(eventNames)
registerevent(c.Handle,{eventNames{i}, ...

@(varargin)cqgconnectioneventhandler(varargin{:})})
end

cqgconnectioneventhandler is assigned to the events in eventNames.

Set the API configuration properties. For example, to set the time zone to Eastern Time,
enter the following.

c.APIConfig.TimeZoneCode = "“tzEastern~;

c.APIConfigis a CQG configuration object. For details about setting the API
configuration properties, see CQG API Reference Guide.

Establish the connection to CQG.
startUp(c)
CELStarted

DataConnectionStatusChanged
GWConnectionStatusChanged

The connection event handler displays event names for a successful CQG connection.

3-57

3 Sample Code for Workflows

3-58

Register an event handler to track events associated with the CQG instrument
subscription.

streamEventNames = {"InstrumentSubscribed”, " InstrumentChanged”, ...
" IncorrectSymbol "};
for i = 1l:length(streamEventNames)
registerevent(c.-Handle,{streamEventNames{i}, - ..
@(varargin)cqgrealtimeeventhandler(varargin{:})})
end

Request CQG Real-Time Data

With the connection established, subscribe to the instrument. The instrument name must
be formatted in the CQG long symbol view. For example, to subscribe to a security tied to
corn, enter the following.

instrument = "F_US.EZC";
realtime(c, instrument)

MATLAB writes the structure variable cqgDataEZC to the Workspace browser.

Display cqgDataEZC.
cqgbataEzC(1,1)

ans =
Price: {15x1 cell}
Volume: {15x1 cell}
ServerTimestamp: {15x1 cell}
Timestamp: {15x1 cell}
Type: {15x1 cell}
Name: {15x1 cell}
Isvalid: {15x1 cell}
Instrument: {15x1 cell}
HasVolume: {15x1 cell}

cqgDataEZC returns the current quotes for the security.

Display data in the Price property of cqgDataEZC.
cqgbataEZC(1,1).Price
ans

[-2.1475e+09]
[-2.1475e+09]

Request CQG Real-Time Data

1
N

.1475e+09]
660.5000]

[SS =

.1475e+09]
.1475e+09]
.1475e+09]
.1475e+09]
.1475e+09]
.1475e+09]
.1475e+09]

660.5000]
.1475e+09]

Close the CQG Connection

| |
NNNNNNDN

rnlan Lo LoaLonLonlonbon Loat o Yo Lanlon
N

close(c)

See Also

close | cqg | createOrder | history | realtime | shutDown | startUp |

timeseries

Related Examples

. “Create an Order Using CQG” on page 1-11

. “Create CQG Orders” on page 3-45

. “Request CQG Historical Data” on page 3-50

. “Request CQG Intraday Tick Data” on page 3-53

More About
. “Workflow for CQG” on page 2-8

External Websites
. CQG API Reference Guide

3-59

http://partners.cqg.com/api-resources/technical-documentation

Functions — Alphabetical List

4 Functions — Alphabetical List

4-2

emsx

Create Bloomberg EMSX connection

Syntax

c = emsx(servicename)

Description

c = emsx(servicename) creates a connection to the local Bloomberg EMSX
communications server using the service servicename.

Examples

Connect to the Bloomberg EMSX Test Service

Create a connection c to the Bloomberg EMSX test service. You can place test calls using
this service.

c = emsx("//blp/emapisvc_beta®)

CcC =
emsx with properties:

Session: [1x1 com.bloomberglp.blpapi.Session]
Service: [1x1 com.bloomberglp.blpapi.impl.aQ]
Ipaddress: "localhost®
Port: 8194

MATLAB returns c as the connection to the Bloomberg EMSX test service with the
following:

* Bloomberg EMSX session object

* Bloomberg EMSX service object

+ IP address of the machine running the Bloomberg EMSX test service

* Port number of the machine running the Bloomberg EMSX test service

emsx

Close the Bloomberg EMSX connection.

close(c)
Connect to the Bloomberg EMSX Production Service

Create a connection C to the Bloomberg EMSX production service. You can place live
calls using this service.

(o emsx("//bmp/emapisvc®)

Cc =
emsx with properties:

Session: [1x1 com.bloomberglp.blpapi.Session]
Service: [1x1 com.bloomberglp.blpapi.impl.aQ]
Ipaddress: "localhost*®
Port: 8194

MATLAB returns c as the connection to the Bloomberg EMSX test service with the
following:

* Bloomberg EMSX session object

* Bloomberg EMSX service object

+ IP address of the machine running the Bloomberg EMSX production service

* Port number of the machine running the Bloomberg EMSX production service
Close the Bloomberg EMSX connection.

close(c)

. “Create an Order Using Bloomberg EMSX” on page 1-13

. “Create and Manage a Bloomberg EMSX Order” on page 3-12

. “Create and Manage a Bloomberg EMSX Route” on page 3-16
. “Manage a Bloomberg EMSX Order and Route” on page 3-21

Input Arguments

servicename — Bloomberg EMSX service name
string

4-3

4 Functions — Alphabetical List

4-4

Bloomberg EMSX service name, specified using a test or production Bloomberg EMSX
servicename.

Data Types: char

Output Arguments

¢ — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, returned as a connection object with these
properties.

Property Description

Session Bloomberg EMSX session object

Service Bloomberg EMSX service object

Ipaddress IP address of the machine where

Bloomberg EMSX is running

Port Port number of the machine where
Bloomberg EMSX is running

More About
Tips

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.

. “Workflow for Bloomberg EMSX” on page 2-2

See Also

close | createOrder | createOrderAndRoute | routeOrder

Introduced in R2013a

close

close

Close Bloomberg EMSX connection

Syntax

close(c)

Description

close(c) closes the Bloomberg EMSX connection C.

Examples

Close the Bloomberg EMSX Connection
Create the Bloomberg EMSX connection c.

c = emsx("//blp/emapisvc_beta®);
Close the Bloomberg EMSX connection.
close(c)

“Create an Order Using Bloomberg EMSX” on page 1-13
“Create and Manage a Bloomberg EMSX Order” on page 3-12
“Create and Manage a Bloomberg EMSX Route” on page 3-16
“Manage a Bloomberg EMSX Order and Route” on page 3-21

Input Arguments

¢ — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using emsx.

4-5

4 Functions — Alphabetical List

More About
Tips

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.

“Workflow for Bloomberg EMSX” on page 2-2

See Also

createOrder | createOrderAndRoute | emsx | routeOrder

Introduced in R2013a

4-6

createOrder

createOrder

Create Bloomberg EMSX order

Syntax

events = createOrder(c,order)
events createOrder(c,order, "timeOut",timeout)

createOrder(, "useDefaultEventHandler® ,false)

= createOrder(,c,order,options)

Description

events = createOrder(c,order) creates a Bloomberg EMSX order using the
Bloomberg EMSX connection ¢ and order request order that contains the required
fields for creating an order. createOrder returns the order sequence number and status
message using the default event handler.

events = createOrder(c,order, "timeOut”,timeout) specifies a timeout value
timeout for the execution of the default event handler.

createOrder(___ ,"useDefaultEventHandler" ,false) creates a Bloomberg
EMSX order using any of the input arguments in the previous syntaxes and a custom
event handler. Write a custom event handler to process the events associated with
creating orders. This syntax does not have an output argument because the custom event
handler processes the contents of the event queue. If you want to use the default event
handler instead, set the flag "useDefaul tEventHandler” to true and use the events
output argument. By default, the flag "useDefaultEventHandler"” is set to true.

____ = createOrder(,c,order,options) uses the options structure to customize
the output, which is useful to preconfigure and save your options for repeated use. The
available options structure fields are timeOut and useDefaul tEventHandler. Use
the events output argument when useDefaultEventHandler is set to true and omit
this output argument when useDefaultEventHandler is set to false.

4 Functions — Alphabetical List

Examples

Create an Order Using the Default Event Handler

To create a Bloomberg EMSX order, create the connection ¢ using emsx and set up the
order subscription using orders. For an example showing these activities, see “Create
and Manage a Bloomberg EMSX Order” on page 3-12.

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order _.EMSX_TICKER = "IBM";

order .EMSX_AMOUNT = int32(100);
order _.EMSX_ORDER_TYPE = "MKT";

order _.EMSX_BROKER = "BB~;

order _EMSX_TIF = "DAY";

order .EMSX_HAND_INSTRUCTION = "ANY";
order _EMSX_SIDE = "BUY";

Create the order using the Bloomberg EMSX connection ¢ and order.
events = createOrder(c,order)

events =

EMSX_SEQUENCE: 354646
MESSAGE: "Order created”

The default event handler processes the events associated with creating the order.
createOrder returns events as a structure that contains these fields:

* Bloomberg EMSX order number
* Bloomberg EMSX message

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
This code assumes that orders creates subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.

createOrder

close(c)
Create an Order Using a Timeout

To create a Bloomberg EMSX order, create the connection ¢ using emsx and set up the
order subscription using orders. For an example showing these activities, see “Create
and Manage a Bloomberg EMSX Order” on page 3-12.

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order .EMSX_TICKER = "IBM";

order .EMSX_AMOUNT = int32(100);
order .EMSX_ORDER_TYPE = “MKT";

order .EMSX_BROKER = "BB";

order .EMSX_TIF = "DAY";

order .EMSX_HAND_INSTRUCTION = “ANY~";
order .EMSX_SIDE = "BUY";

Create the order using the Bloomberg EMSX connection ¢ and order. Set the timeout
value to 200 milliseconds.

events = createOrder(c,order, "timeOut”,b200)

events

EMSX_SEQUENCE: 354646
MESSAGE: "Order created”

The default event handler processes the events associated with creating the order.
createOrder returns events as a structure that contains these fields:

* Bloomberg EMSX order number
* Bloomberg EMSX message

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
This code assumes that orders creates subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.

4 Functions — Alphabetical List

4-10

close(c)
Create an Order Using a Custom Event Handler

To create a Bloomberg EMSX order, create the Bloomberg EMSX connection C using
emsx and set up the order subscription using orders. For an example showing these
activities, see “Create and Manage a Bloomberg EMSX Order” on page 3-12.

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order .EMSX_TICKER "IBM*";

order .EMSX_AMOUNT int32(100);
order .EMSX_ORDER_TYPE = “MKT";

order .EMSX_BROKER = "BB";

order .EMSX_TIF = "DAY";

order .EMSX_HAND_INSTRUCTION = "ANY~";
order .EMSX_SIDE = "BUY";

Suppose you create a custom event handler function called eventhandler with input
argument c. Run eventhandler using timer. Start the timer to run eventhandler
immediately using start. For details, see “Writing and Running Custom Event Handler
Functions with Bloomberg EMSX” on page 1-23.

t = timer("TimerFcn®,{@c.-eventhandler}, "Period”,1, ...
"ExecutionMode® , "fixedRate")
start(t)

t is the MATLAB timer object. For details, see timer.

Create the order using the Bloomberg EMSX connection ¢ and order. Set the flag
"useDefaultEventHandler" to False so that eventhandler processes the events
associated with creating an order.

createOrder(c,order, "useDefaul tEventHandler*, false)

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
This code assumes that orders creates subs. Stop the timer to stop data updates using
stop.

c.Session.unsubscribe(subs)
stop(t)

createOrder

Delete the timer if you are done processing data updates using delete.
delete(t)
Close the Bloomberg EMSX connection.

close(c)
Create an Order Using an Options Structure

To create a Bloomberg EMSX order, create the connection ¢ using emsx and set up the
order subscription using orders. For an example showing these activities, see “Create
and Manage a Bloomberg EMSX Order” on page 3-12.

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order .EMSX_TICKER "IBM*";

order .EMSX_AMOUNT int32(100);
order .EMSX_ORDER_TYPE = “MKT";

order .EMSX_BROKER = "BB";

order .EMSX_TIF = "DAY";

order .EMSX_HAND_INSTRUCTION = "ANY~";
order .EMSX_SIDE = "BUY";

Create a structure options. To use the default event handler, set the field
useDefaultEventHandler to true. Set the field timeOut to 200 milliseconds. Create
the order using the Bloomberg EMSX connection ¢, order, and options structure
options.

options.useDefaultEventHandler = true;
options.timeOut = 200;

events = createOrder(c,order,options)

events

EMSX SEQUENCE: 354646
MESSAGE: "Order created”

The default event handler processes the events associated with creating the order.
createOrder returns events as a structure that contains these fields:

4-11

4 Functions — Alphabetical List

4-12

* Bloomberg EMSX order number
+ Bloomberg EMSX message

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.

This code assumes that orders creates subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.

close(c)

. “Create and Manage a Bloomberg EMSX Order” on page 3-12
. “Create and Manage a Bloomberg EMSX Route” on page 3-16
. “Manage a Bloomberg EMSX Order and Route” on page 3-21

Input Arguments

¢ — Bloomberg EMSX service connection

connection object

Bloomberg EMSX service connection, specified as a connection object created using emsx.

order — Order request
structure

Order request, specified as a structure using Bloomberg EMSX field properties. Use
getAlIFieldMetaData to view all available field property options for order. Convert
the number of shares to a 32-bit signed integer using Int32. order contains these fields.

Field

Description

EMSX_TICKER

Bloomberg EMSX ticker symbol

EMSX_AMOUNT

Bloomberg EMSX amount of shares

EMSX_ORDER_TYPE

Bloomberg EMSX order type

EMSX_BROKER

Bloomberg EMSX broker name

EMSX_TIF

Bloomberg EMSX time in force

EMSX_HAND_INSTRUCTION

Bloomberg EMSX hand instruction

createOrder

Field Description
EMSX_SIDE Bloomberg EMSX buy or sell specification

Example: order .EMSX_TICKER = "XYZ";
order . EMSX_AMOUNT = int32(100);
order.EMSX_ORDER_TYPE = "MKT";

order .EMSX_BROKER = "BB";
order.EMSX_TIF = "DAY";
order.EMSX_HAND INSTRUCTION = "ANY";
order.EMSX_SIDE = "BUY";

Data Types: struct

timeout — Timeout value
500 milliseconds (default) | nonnegative integer

Timeout value, specified as a nonnegative integer. This integer denotes the time in
milliseconds the event handler listens to the queue for an event for each iteration of the
code. The event handler can be a default or custom event handler.

Data Types: double

options — Options for custom event handler or timeout value
structure

Options for custom event handler or timeout value, specified as a structure. To reuse the
settings for specifying a custom event handler or timeout value for the event handler, use
the options structure.

Specify using a custom event handler and a timeout value of 500 milliseconds.

Example: options.useDefaul tEventHandler = false;
options.timeOut = 500;

Data Types: struct

Output Arguments

events — Event queue contents
double | structure

Event queue contents, returned as a double or structure.

4-13

4 Functions — Alphabetical List

4-14

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

More About

Tips

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.

. “Workflow for Bloomberg EMSX” on page 2-2

. “Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on
page 1-23

See Also

timer | close | createOrder | createOrderAndRoute |
createOrderAndRouteWithStrat | delete | deleteOrder | deleteRoute | emsx
| modifyOrder | orders | routeOrder | routes | start | stop

Introduced in R2013a

createOrderAndRoute

createOrderAndRoute

Create and route Bloomberg EMSX order

Syntax

events = createOrderAndRoute(c,order)
events createOrderAndRoute(c,order, "timeOut”,timeout)

createOrderAndRoute(, "useDefaultEventHandler" ,false)

= createOrderAndRoute(c,order,options)

Description

events = createOrderAndRoute(c,order) creates and routes a Bloomberg
EMSX order using Bloomberg EMSX connection ¢ and order request order.
createOrderAndRoute returns the order sequence number, route number, and status
message using the default event handler.

events = createOrderAndRoute(c,order, "timeOut” ,timeout) specifies a
timeout value timeout for the execution of the default event handler.

createOrderAndRoute(___ , "useDefaultEventHandler®,false) creates and
routes a Bloomberg EMSX order using any of the input arguments in the previous
syntaxes and a custom event handler. Write a custom event handler to process

the events associated with creating and routing orders. This syntax does not have
an output argument because the custom event handler processes the contents of

the event queue. If you want to use the default event handler instead, set the flag
"useDefaultEventHandler" to true and use the events output argument. By
default, the flag "useDefaultEventHandler" is set to true.

= createOrderAndRoute(c,order,options) uses the options
structure to customize the output, which is useful to preconfigure and save your
options for repeated use. The available options structure fields are timeOut
and useDefaul tEventHandler. Use the events output argument when
useDefaul tEventHandler is set to true and omit this output argument when
useDefaultEventHandler is set to false.

4-15

4 Functions — Alphabetical List

4-16

Examples

Create and Route an Order Using the Default Event Handler

To create and route a Bloomberg EMSX order, create the connection ¢ using emsx and
set up the order and route subscription using orders and routes. For an example
showing these activities, see “Manage a Bloomberg EMSX Order and Route” on page
3-21.

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order .EMSX_TICKER "1BM*;

order .EMSX_AMOUNT int32(100);
order .EMSX_ORDER_TYPE = "MKT";
order_EMSX_BROKER = "BB~";

order .EMSX_TIF = "DAY";

order .EMSX_HAND_INSTRUCTION = "ANY";
order _EMSX_SIDE = "BUY";

Create and route the order using the Bloomberg EMSX connection ¢ and order.
events = createOrderAndRoute(c,order)

events =

EMSX_SEQUENCE: 335877
EMSX_ROUTE_ID: 1
MESSAGE: "Order created and routed”

The default event handler processes the events associated with creating and routing the
order. createOrderAndRoute returns events as a structure that contains these fields:
* Bloomberg EMSX order number

* Bloomberg EMSX route identifier

* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list

objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

createOrderAndRoute

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)
Create and Route an Order Using a Timeout

To create and route a Bloomberg EMSX order, create the connection ¢ using emsx and
set up the order and route subscription using orders and routes. For an example
showing these activities, see “Manage a Bloomberg EMSX Order and Route” on page
3-21.

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using INt32.

order .EMSX_TICKER = "IBM";

order .EMSX_AMOUNT = int32(100);
order .EMSX_ORDER_TYPE = "MKT";
order_EMSX_BROKER = "BB~";

order .EMSX_TIF = "DAY";

order .EMSX_HAND_INSTRUCTION = "ANY";
order_.EMSX_SIDE = "BUY";

Create and route the order using the Bloomberg EMSX connection ¢ and order. Set the
timeout value to 200 milliseconds.

events = createOrderAndRoute(c,order, "timeOut”,200)
events =
EMSX_ SEQUENCE: 335877

EMSX_ROUTE_ID: 1
MESSAGE: "Order created and routed”

The default event handler processes the events associated with creating and routing the
order. createOrderAndRoute returns events as a structure that contains these fields:

* Bloomberg EMSX order number
* Bloomberg EMSX route identifier

4-17

4 Functions — Alphabetical List

4-18

* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)
Create and Route an Order Using a Custom Event Handler

To create and route a Bloomberg EMSX order, create the Bloomberg EMSX connection ¢
using emsx and set up the order and route subscription using orders and routes. For
an example showing these activities, see “Manage a Bloomberg EMSX Order and Route”
on page 3-21.

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order .EMSX_TICKER "IBM*";

order .EMSX_AMOUNT int32(100);
order .EMSX_ORDER_TYPE = “MKT";

order .EMSX_BROKER = "BB";

order .EMSX_TIF = "DAY";

order .EMSX_HAND_INSTRUCTION = "ANY~";
order .EMSX_SIDE = "BUY";

Suppose you create a custom event handler function called eventhandler with input
argument c. Run eventhandler using timer. Start the timer to run eventhandler
immediately using start. For details, see “Writing and Running Custom Event Handler
Functions with Bloomberg EMSX” on page 1-23.

t = timer("TimerFcn”®,{@c-eventhandler}, "Period”,1, ...
"ExecutionMode”, "fixedRate")
start(t)

t is the MATLAB timer object. For details, see timer.

createOrderAndRoute

Create and route the order using the Bloomberg EMSX connection ¢ and order. Set
the flag "useDefaultEventHandler" to false so that eventhandler processes the
events associated with creating and routing an order.

createOrderAndRoute(c,order, "useDefaul tEventHandler® ,false)

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs. Stop the timer to stop data updates using stop.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)
stop(t)

Delete the timer if you are done processing data updates using delete.

delete(t)

Close the Bloomberg EMSX connection.

close(c)
Create and Route an Order Using an Options Structure

To create and route a Bloomberg EMSX order, create the connection ¢ using emsx and
set up the order and route subscription using orders and routes. For an example
showing these activities, see “Manage a Bloomberg EMSX Order and Route” on page
3-21.

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order .EMSX_TICKER "1BM*;

order .EMSX_AMOUNT int32(100);
order .EMSX_ORDER_TYPE = "MKT";
order_.EMSX_BROKER = "BB~";

order _.EMSX_TIF = "DAY";

order .EMSX_HAND_INSTRUCTION = "ANY";
order.EMSX_SIDE = "BUY";

Create a structure options. To use the default event handler, set the field
useDefaul tEventHandler to true. Set the field timeOut to 200 milliseconds. Create

4-19

4 Functions — Alphabetical List

and route the order using the Bloomberg EMSX connection ¢, order, and options
structure options.

options.useDefaultEventHandler = true;
options.timeOut = 200;

events = createOrderAndRoute(c,order,options)

events =

EMSX_ SEQUENCE: 728924
EMSX_ROUTE_ID: 1
MESSAGE: "Order created and routed”

The default event handler processes the events associated with creating and routing the
order. createOrderAndRoute returns events as a structure that contains these fields:

* Bloomberg EMSX order number
* Bloomberg EMSX route identifier
* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.
close(c)

. “Create an Order Using Bloomberg EMSX” on page 1-13

. “Create and Manage a Bloomberg EMSX Order” on page 3-12
. “Create and Manage a Bloomberg EMSX Route” on page 3-16
. “Manage a Bloomberg EMSX Order and Route” on page 3-21

Input Arguments

¢ — Bloomberg EMSX service connection
connection object

4-20

createOrderAndRoute

Bloomberg EMSX service connection, specified as a connection object created using emsx.

order — Order request
structure

Order request, specified as a structure using Bloomberg EMSX field properties. Use
getAlIFieldMetaData to view all available field property options for order. Convert
the number of shares to a 32-bit signed integer using Int32. order contains these fields.

Field Description

EMSX_TICKER Bloomberg EMSX ticker symbol
EMSX_AMOUNT Bloomberg EMSX amount of shares
EMSX_ORDER_TYPE Bloomberg EMSX order type
EMSX_BROKER Bloomberg EMSX broker name
EMSX_TIF Bloomberg EMSX time in force
EMSX_HAND_INSTRUCTION Bloomberg EMSX hand instruction
EMSX_SIDE Bloomberg EMSX buy or sell specification

Example: order .EMSX_TICKER = "XYZ";
order.EMSX_AMOUNT = int32(100);
order _EMSX_ORDER_TYPE = "MKT";
order.EMSX BROKER = "BB";
order.EMSX_TIF = "DAY";

order .EMSX_HAND INSTRUCTION = "ANY";
order.EMSX_SIDE = "BUY";

Data Types: struct

timeout — Timeout value
500 milliseconds (default) | nonnegative integer

Timeout value, specified as a nonnegative integer. This integer denotes the time in
milliseconds the event handler listens to the queue for an event for each iteration of the
code. The event handler can be a default or custom event handler.

Data Types: double

options — Options for custom event handler or timeout value
structure

4-21

4 Functions — Alphabetical List

4-22

Options for custom event handler or timeout value, specified as a structure. To reuse the
settings for specifying a custom event handler or timeout value for the event handler, use
the options structure.

Specify using a custom event handler and a timeout value of 500 milliseconds.

Example: options.useDefaultEventHandler = false;
options.timeOut = 500;

Data Types: struct

Output Arguments

events — Event queue contents
double | structure

Event queue contents, returned as a double or structure.

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

More About

Tips

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.

. “Workflow for Bloomberg EMSX” on page 2-2

. “Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on
page 1-23

See Also

timer | close | createOrder | createOrderAndRouteWithStrat | delete |
deleteOrder | deleteRoute | emsx | modifyOrder | orders | routeOrder |
routes | start | stop

Introduced in R2013a

createOrderAndRouteWithStrat

createOrderAndRouteWithStrat

Create and route Bloomberg EMSX order with strategies

Syntax

events = createOrderAndRouteWithStrat(c,order,strat)
events = createOrderAndRouteWithStrat(c,order,strat, "timeOut”,
timeout)

createOrderAndRouteWithStrat(, "useDefaultEventHandler® ,false)

= createOrderAndRouteWithStrat(c,order,strat,options)

Description

events = createOrderAndRouteWithStrat(c,order,strat) creates and routes
a Bloomberg EMSX order with strategies using Bloomberg EMSX connection c, order
request order, and order strategy strat. createOrderAndRouteWithStrat returns

the order sequence number, route number, and status message using the default event
handler.

events = createOrderAndRouteWithStrat(c,order,strat, "timeOut”,
timeout) specifies a timeout value timeout for the execution of the default event
handler.

createOrderAndRouteWithStrat(___ , "useDefaultEventHandler™ ,false)
creates and routes a Bloomberg EMSX order with strategies using any of the input
arguments in the previous syntaxes and a custom event handler. Write a custom event
handler to process the events associated with creating and routing orders. This syntax
does not have an output argument because the custom event handler processes the
contents of the event queue. If you want to use the default event handler instead, set the
flag "useDefaultEventHandler"® to true and use the events output argument. By
default, the flag "useDefaul tEventHandler"® is set to true

= createOrderAndRouteWithStrat(c,order,strat,options) uses
the options structure to customize the output, which is useful to preconfigure
and save your options for repeated use. The available options structure fields are

4-23

4 Functions — Alphabetical List

timeOut and useDefaul tEventHandler. Use the events output argument when
useDefaul tEventHandler is set to true and omit this output argument when
useDefaultEventHandler is set to false.

Examples

Create and Route an Order Using the Default Event Handler

To create and route a Bloomberg EMSX order with strategies, create the connection ¢
using emsx and set up the order and route subscription using orders and routes. For
an example showing these activities, see “Manage a Bloomberg EMSX Order and Route”
on page 3-21.

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using Int32.

order .EMSX_TICKER "IBM*";

order .EMSX_AMOUNT int32(100);
order .EMSX_ORDER_TYPE = “MKT";
order .EMSX_BROKER = "BB";

order .EMSX_TIF = "DAY";

order .EMSX_HAND_INSTRUCTION = “ANY~";
order .EMSX_SIDE = "BUY";

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using Int32.

strat.EMSX_STRATEGY_NAME = "SSP*;
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 O 01);
strat.EMSX_STRATEGY_FIELDS = {"09:30:00%,"14:30:00",50};

Create and route the order with strategies using the Bloomberg EMSX connection c,
order, and strat.

events = createOrderAndRouteWithStrat(c,order,strat)

events =

EMSX_SEQUENCE: 335877
EMSX_ROUTE_ID: 1
MESSAGE: "Order created and routed”

4-24

createOrderAndRouteWithStrat

The default event handler processes the events associated with creating and routing the
order. createOrderAndRouteWithStrat returns events as a structure that contains
these fields:

* Bloomberg EMSX order number
* Bloomberg EMSX route identifier
* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)
Create and Route an Order Using a Timeout

To create and route a Bloomberg EMSX order with strategies, create the connection ¢
using emsx and set up the order and route subscription using orders and routes. For
an example showing these activities, see “Manage a Bloomberg EMSX Order and Route”
on page 3-21.

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order .EMSX_TICKER = "IBM";

order .EMSX_AMOUNT = int32(100);
order .EMSX_ORDER_TYPE = "MKT";
order_.EMSX_BROKER = "BB~";

order .EMSX_TIF = "DAY";
order.EMSX_HAND_INSTRUCTION = “ANY";
order.EMSX_SIDE = "BUY";

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using int32.

strat_EMSX_STRATEGY_NAME = "SSP*";

4-25

4 Functions — Alphabetical List

4-26

strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 O 0]);
strat.EMSX_STRATEGY FIELDS = {"09:30:00","14:30:00",50};

Create and route the order with strategies using the Bloomberg EMSX connection cC,
order, and strat. Set the timeout value to 200 milliseconds.

events = createOrderAndRouteWithStrat(c,order,strat, "timeOut”,200)

events =

EMSX_SEQUENCE: 335877
EMSX_ROUTE _ID: 1
MESSAGE: "Order created and routed”

The default event handler processes the events associated with creating and routing the
order. createOrderAndRouteWithStrat returns events as a structure that contains
these fields:

+ Bloomberg EMSX order number

+ Bloomberg EMSX route identifier

* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list

objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)
Create and Route an Order Using a Custom Event Handler

To create and route a Bloomberg EMSX order with strategies, create the Bloomberg
EMSX connection € using emsx and set up the order and route subscription using
orders and routes. For an example showing these activities, see “Manage a Bloomberg
EMSX Order and Route” on page 3-21.

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

createOrderAndRouteWithStrat

order .EMSX_TICKER = "IBM";

order _.EMSX_AMOUNT = int32(100);
order .EMSX_ORDER_TYPE = "MKT";
order_.EMSX_BROKER = "BB";

order _.EMSX_TIF = "DAY";
order.EMSX_HAND_INSTRUCTION = “ANY";
order.EMSX_SIDE = "BUY";

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using Int32.

strat.EMSX_STRATEGY_NAME = “SSP-";
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 0 O]);
strat.EMSX_STRATEGY_FIELDS = {"09:30:00","14:30:00",50}%};

Suppose you create a custom event handler function called eventhandler with input
argument c. Run eventhandler using timer. Start the timer to run eventhandler
immediately using start. For details, see “Writing and Running Custom Event Handler
Functions with Bloomberg EMSX” on page 1-23.

t = timer("TimerFcn”®,{@c.eventhandler}, "Period”,1, ...
"ExecutionMode”, "fixedRate")
start(t)

t is the MATLAB timer object. For details, see timer.

Create and route the order with strategies using the Bloomberg EMSX connection
c, order, and strat. Set the flag "useDefaul tEventHandler™ to false so that
eventhandler processes the events associated with creating and routing an order.

createOrderAndRouteWithStrat(c,order,strat, . ..
"useDefaultEventHandler* ,false)

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs. Stop the timer to stop data updates using stop.

c.Session.unsubscribe(osubs)

c.Session.unsubscribe(rsubs)

stop(t)

Delete the timer if you are done processing data updates using delete.

delete(t)

4-27

4 Functions — Alphabetical List

Close the Bloomberg EMSX connection.
close(c)
Create and Route an Order Using an Options Structure

To create and route a Bloomberg EMSX order with strategies, create the connection c
using emsx and set up the order and route subscription using orders and routes. For
an example showing these activities, see “Manage a Bloomberg EMSX Order and Route
on page 3-21.

99

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order .EMSX_TICKER = "IBM";

order .EMSX_AMOUNT = int32(100);
order _.EMSX_ORDER_TYPE = "MKT";

order _.EMSX_BROKER = "BB";

order .EMSX_TIF = "DAY";

order .EMSX_HAND_INSTRUCTION = "ANY";
order .EMSX_SIDE = "BUY";

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using int32.

strat.EMSX_STRATEGY NAME = "SSP";
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 O 0]);
strat.EMSX_STRATEGY FIELDS = {"09:30:00","14:30:00",50};

Create a structure options. To use the default event handler, set the field

useDefaul tEventHandler to true. Set the field timeOut to 200 milliseconds. Create
and route the order using the Bloomberg EMSX connection ¢, order, strat, and options
structure options.

options.useDefaultEventHandler = true;
options.timeOut = 200;

events = createOrderAndRouteWithStrat(c,order,strat,options)

events

EMSX_SEQUENCE: 728924
EMSX_ROUTE_ID: 1

4-28

createOrderAndRouteWithStrat

MESSAGE: "Order created and routed”

The default event handler processes the events associated with creating and routing the
order. createOrderAndRouteWithStrat returns events as a structure that contains
these fields:

* Bloomberg EMSX order number

+ Bloomberg EMSX route identifier

* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list

objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)

. “Create and Manage a Bloomberg EMSX Order” on page 3-12
. “Create and Manage a Bloomberg EMSX Route” on page 3-16
. “Manage a Bloomberg EMSX Order and Route” on page 3-21

Input Arguments

¢ — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using emsx.

order — Order request
structure

Order request, specified as a structure using Bloomberg EMSX field properties. Use
getAl IFieldMetaData to view all available field property options for order. Convert
the number of shares to a 32-bit signed integer using int32. order contains these fields.

Field Description
EMSX_TICKER Bloomberg EMSX ticker symbol

4-29

4 Functions — Alphabetical List
P

4-30

Field Description

EMSX_AMOUNT Bloomberg EMSX amount of shares
EMSX_ORDER_TYPE Bloomberg EMSX order type
EMSX_BROKER Bloomberg EMSX broker name
EMSX_TIF Bloomberg EMSX time in force
EMSX_HAND _INSTRUCTION Bloomberg EMSX hand instruction
EMSX_SIDE Bloomberg EMSX buy or sell specification

Example: order .EMSX_TICKER = "XYZ*;
order .EMSX_AMOUNT = 1nt32(100);
order .EMSX_ORDER_TYPE = “MKT";
order.EMSX_BROKER = "BB";

order .EMSX_TIF = "DAY";

order .EMSX_HAND_INSTRUCTION = “ANY~";
order.EMSX_SIDE = "BUY";

Data Types: struct

strat — Order strategies
structure

Order strategies, specified as a structure that contains the fields:
EMSX_STRATEGY_NAME, EMSX_STRATEGY_FIELD_INDICATORS, and
EMSX_STRATEGY_FIELDS. The structure field values must align with the strategy fields
specified by EMSX_STRATEGY_NAME. For details about strategy fields and ordering, see
getBrokerinfo.

Convert EMSX_STRATEGY_FIELD_INDICATORS to a 32-bit signed integer using int32.

Set EMSX_STRATEGY_FIELD_INDICATORS equal to O for each field to use the field data
setting in EMSX_FI1ELD_DATA. Or, set EMSX_STRATEGY_FIELD_INDICATORS equal to 1
to ignore the data in EMSX_FI1ELD_DATA.

Example: strat_.EMSX_STRATEGY_NAME = "SSP";
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 0 0]):
strat_EMSX_STRATEGY_FIELDS = {"09:30:00","14:30:00",50};

Data Types: struct

timeout — Timeout value
500 milliseconds (default) | nonnegative integer

createOrderAndRouteWithStrat

Timeout value, specified as a nonnegative integer. This integer denotes the time in
milliseconds the event handler listens to the queue for an event for each iteration of the
code. The event handler can be a default or custom event handler.

Data Types: double

options — Options for custom event handler or timeout value
structure

Options for custom event handler or timeout value, specified as a structure. To reuse the
settings for specifying a custom event handler or timeout value for the event handler, use
the options structure.

Specify using a custom event handler and a timeout value of 500 milliseconds.

Example: options.useDefaultEventHandler = false;
options.timeOut = 500;

Data Types: struct

Output Arguments

events — Event queue contents
double | structure

Event queue contents, returned as a double or structure.

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

More About
Tips

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.
. “Workflow for Bloomberg EMSX” on page 2-2

. “Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on
page 1-23

4-31

4 Functions — Alphabetical List

See Also

timer | close | createOrder | delete | deleteOrder | deleteRoute | emsx |
getBrokerInfo | modifyOrder | orders | routeOrder | routes | start | stop

Introduced in R2013a

4-32

deleteOrder

deleteOrder

Delete Bloomberg EMSX order

Syntax

events = deleteOrder(c,ordernum)
events deleteOrder(c,ordernum, "timeOut”, timeout)

deleteOrder(, "useDefaultEventHandler® ,false)

= deleteOrder(c,ordernum,options)

Description

events = deleteOrder(c,ordernum) deletes a Bloomberg EMSX order using the
Bloomberg EMSX connection ¢ and order number or structure ordernum. deleteOrder
returns a status message using the default event handler.

events = deleteOrder(c,ordernum, "timeOut” ,timeout) specifies a timeout
value timeout for the execution of the default event handler.

deleteOrder(___ ,"useDefaultEventHandler" ,false) deletes a Bloomberg
EMSX order using any of the input arguments in the previous syntaxes and a custom
event handler. Write a custom event handler to process the events associated with
deleting orders. This syntax does not have an output argument because the custom event
handler processes the contents of the event queue. If you want to use the default event
handler instead, set the flag "useDefaultEventHandler"” to true and use the events
output argument. By default, the flag "useDefaul tEventHandler” is set to true.

___ = deleteOrder(c,ordernum,options) uses the options structure
to customize the output, which is useful to preconfigure and save your options
for repeated use. The available options structure fields are timeOut

and useDefaultEventHandler. Use the events output argument when
useDefaul tEventHandler is set to true and omit this output argument when
useDefaultEventHandler is set to false.

4-33

4 Functions — Alphabetical List

4-34

Examples

Delete an Order Using the Default Event Handler

To delete a Bloomberg EMSX order, create the connection C using emsx, set up the order
subscription using orders, and create an order using createOrder. For an example
showing these activities, see “Create and Manage a Bloomberg EMSX Order” on page
3-12.

Define the structure ordernum that contains the order sequence number
EMSX_SEQUENCE for the order to delete.

ordernum.EMSX_SEQUENCE = 335877;
Delete the order using the Bloomberg EMSX connection ¢ and ordernum.
events = deleteOrder(c,ordernum)

events =

STATUS: *0°F
MESSAGE: "Order deleted”

The default event handler processes the events associated with deleting the order.
deleteOrder returns events as a structure that contains these fields:

* Bloomberg EMSX status
* Bloomberg EMSX message

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
This code assumes orders creates subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.
close(c)

Delete an Order Using the Order Number Integer

To delete a Bloomberg EMSX order, create the connection € using emsx, set up the order
subscription using orders, and create an order using createOrder. For an example
showing these activities, see “Create and Manage a Bloomberg EMSX Order” on page
3-12.

deleteOrder

Delete the order using the Bloomberg EMSX connection ¢ and the order sequence
number 335877 for the order to delete.

events = deleteOrder(c,335877)

events =

STATUS: "0O°
MESSAGE: "Order deleted”

The default event handler processes the events associated with deleting the order.
deleteOrder returns events as a structure that contains these fields:

* Bloomberg EMSX status
* Bloomberg EMSX message

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
This code assumes orders creates subs.

c.Session.unsubscribe(subs)
Close the Bloomberg EMSX connection.

close(c)
Delete an Order Using a Timeout

To delete a Bloomberg EMSX order, create the connection C using emsx, set up the order
subscription using orders, and create an order using createOrder. For an example
showing these activities, see “Create and Manage a Bloomberg EMSX Order” on page
3-12.

Define the structure ordernum that contains the order sequence number
EMSX_SEQUENCE for the order to delete.

ordernum.EMSX_SEQUENCE = 335877;

Delete the order using the Bloomberg EMSX connection ¢ and ordernum. Set the
timeout value to 200 milliseconds.

events = deleteOrder(c,ordernum, "timeOut”,200)

events

4-35

4 Functions — Alphabetical List

4-36

STATUS: "O*
MESSAGE: "Order deleted”

The default event handler processes the events associated with deleting the order.
deleteOrder returns events as a structure that contains these fields:

* Bloomberg EMSX status
* Bloomberg EMSX message

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
This code assumes orders creates subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.

close(c)
Delete an Order Using a Custom Event Handler

To delete a Bloomberg EMSX order, create the Bloomberg EMSX connection ¢
using emsX, set up the order subscription using orders, and create an order using

createOrder. For an example showing these activities, see “Create and Manage a
Bloomberg EMSX Order” on page 3-12.

Define the structure ordernum that contains the order sequence number
EMSX_SEQUENCE for the order to delete.

ordernum.EMSX_SEQUENCE = 335877;

Suppose you create a custom event handler function called eventhandler with input
argument c. Run eventhandler using timer. Start the timer to run eventhandler
immediately using start. For details, see “Writing and Running Custom Event Handler
Functions with Bloomberg EMSX” on page 1-23.

t = timer("TimerFcn®,{@c.-eventhandler}, "Period”,1, ...
"ExecutionMode”, "fixedRate")
start(t)

t is the MATLAB timer object. For details, see timer.

Delete the order using the Bloomberg EMSX connection ¢ and ordernum. Set the flag
"useDefaultEventHandler" to False so that eventhandler processes the events
associated with deleting an order.

deleteOrder

deleteOrder(c,ordernum, "useDefaultEventHandler™, false)

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
This code assumes orders creates subs. Stop the timer to stop data updates using stop.

c.Session.unsubscribe(subs)
stop(t)

Delete the timer if you are done processing data updates using delete.
delete(t)

Close the Bloomberg EMSX connection.

close(c)

Delete an Order Using an Options Structure

To delete a Bloomberg EMSX order, create the connection C using emsx, set up the order
subscription using orders, and create an order using createOrder. For an example
showing these activities, see “Create and Manage a Bloomberg EMSX Order” on page
3-12.

Define the structure ordernum that contains the order sequence number
EMSX_SEQUENCE for the order to delete.

ordernum.EMSX_SEQUENCE = 335877;

Create a structure options. To use the default event handler, set the field

useDefaul tEventHandler to true. Set the field timeOut to 200 milliseconds. Delete
the order using the Bloomberg EMSX connection ¢, ordernum, and options structure
options.

options.useDefaultEventHandler = true;
options.timeOut = 200;

events = deleteOrder(c,ordernum,options)

events =

STATUS: "OF
MESSAGE: "Order deleted”

The default event handler processes the events associated with deleting the order.
deleteOrder returns events as a structure that contains these fields:

4-37

4 Functions — Alphabetical List

* Bloomberg EMSX status
* Bloomberg EMSX message

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
This code assumes orders creates subs.

c.Session.unsubscribe(subs)
Close the Bloomberg EMSX connection.
close(c)

. “Create and Manage a Bloomberg EMSX Order” on page 3-12
. “Create and Manage a Bloomberg EMSX Route” on page 3-16
. “Manage a Bloomberg EMSX Order and Route” on page 3-21

Input Arguments

¢ — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using emsx.

ordernum — Order numbers to delete
structure | integer

Order numbers to delete, specified as a structure or an integer to denote one or more

order sequence numbers.

Data Types: struct | Int32

timeout — Timeout value
500 milliseconds (default) | nonnegative integer

Timeout value, specified as a nonnegative integer. This integer denotes the time in
milliseconds the event handler listens to the queue for an event for each iteration of the
code. The event handler can be a default or custom event handler.

Data Types: double

options — Options for custom event handler or timeout value
structure

4-38

deleteOrder

Options for custom event handler or timeout value, specified as a structure. To reuse the
settings for specifying a custom event handler or timeout value for the event handler, use
the options structure.

Specify using a custom event handler and a timeout value of 500 milliseconds.

Example: options.useDefaultEventHandler = false;
options.timeOut = 500;

Data Types: struct

Output Arguments

events — Event queue contents
double | structure

Event queue contents, returned as a double or structure.

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

More About
Tips

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.
. “Workflow for Bloomberg EMSX” on page 2-2

. “Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on
page 1-23

See Also

timer | close | createOrder | createOrderAndRoute | delete | deleteRoute |
emsx | modifyOrder | orders | routeOrder | routes | start | stop

Introduced in R2013a

4-39

4 Functions — Alphabetical List

4-40

deleteRoute

Delete Bloomberg EMSX active shares

Syntax

events = deleteRoute(c, routenum)
events = deleteRoute(c,routenum, "timeOut”,timeout)

deleteRoute(, "useDefaultEventHandler” ,false)

= deleteRoute(c, routenum,options)

Description

events = deleteRoute(c, routenum) deletes the active shares that are routed
but not filled using the Bloomberg EMSX connection ¢ and route number routenum.
deleteRoute returns a status message using the default event handler.

events = deleteRoute(c, routenum, "timeOut” ,timeout) specifies a timeout
value timeout for the execution of the default event handler.

deleteRoute(___ , "useDefaultEventHandler™ ,false) deletes the active
shares that are routed but not filled using any of the input arguments in the previous
syntaxes and a custom event handler. Write a custom event handler to process

the events associated with deleting the active shares. This syntax does not have

an output argument because the custom event handler processes the contents of

the event queue. If you want to use the default event handler instead, set the flag
"useDefaultEventHandler" to true and use the events output argument. By
default, the flag "useDefaultEventHandler” is set to true.

__ = deleteRoute(c, routenum,options) uses the options structure
to customize the output, which is useful to preconfigure and save your options
for repeated use. The available options structure fields are timeOut

and useDefaul tEventHandler. Use the events output argument when
useDefaul tEventHandler is set to true and omit this output argument when
useDefaultEventHandler is set to false.

deleteRoute

Examples

Delete Active Shares
To delete the active shares that are routed but not filled for a Bloomberg EMSX order:

1 Create the connection € using emsx.
2 Set up an order and route subscription using orders and routes.
3 Create and route an order using createOrderAndRoute.

For an example showing these activities, see “Create and Manage a Bloomberg EMSX
Route” on page 3-16.

Define the structure routenum that contains the order sequence number
EMSX_SEQUENCE for the routed order and route number EMSX_ROUTE_ID.

routenum.EMSX SEQUENCE
routenum.EMSX ROUTE_ID

335877;
1;

Delete the active shares that are routed but not filled using the Bloomberg EMSX
connection ¢ and routenum.
events = deleteRoute(c, routenum)

events =

STATUS: "1°
MESSAGE: "Route cancellation request sent to broker*®

The default event handler processes the events associated with deleting the active
shares. deleteRoute returns events as a structure that contains these fields:

* Bloomberg EMSX status
* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

4-41

4 Functions — Alphabetical List

4-42

close(c)
Delete Active Shares Using a Timeout
To delete the active shares that are routed but not filled for a Bloomberg EMSX order:

1 Create the connection C using emsx.
2 Set up an order and route subscription using orders and routes.
3 Create and route an order using createOrderAndRoute.

For an example showing these activities, see “Create and Manage a Bloomberg EMSX
Route” on page 3-16.

Define the structure routenum that contains the order sequence number
EMSX_SEQUENCE for the routed order and route number EMSX_ROUTE__ID.

routenum.EMSX_ SEQUENCE
routenum.EMSX_ROUTE_ 1D

335877;
1;

Delete the active shares that are routed but not filled using the Bloomberg EMSX
connection ¢ and routenum. Set the timeout value to 200 milliseconds.

options.useDefaul tEventHandler = true;
options.timeOut = 200;

events = deleteRoute(c,routenum, "timeOut”,200)

events =

STATUS: "1°
MESSAGE: "Route cancellation request sent to broker*®

The default event handler processes the events associated with deleting the active
shares. deleteRoute returns events as a structure that contains these fields:

* Bloomberg EMSX status
* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)

deleteRoute

c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)

Delete Active Shares Using a Custom Event Handler

To delete the active shares that are routed but not filled for a Bloomberg EMSX order:

1 Create the Bloomberg EMSX connection € using emsx.
2 Set up an order and route subscription using orders and routes.
3 Create and route an order using createOrderAndRoute.

For an example showing these activities, see “Create and Manage a Bloomberg EMSX
Route” on page 3-16.

Define the structure routenum that contains the order sequence number
EMSX_SEQUENCE for the routed order and route number EMSX_ROUTE_ID.

routenum.EMSX_SEQUENCE
routenum.EMSX_ROUTE_ID

335877;
1;

Suppose you create a custom event handler function called eventhandler with input
argument c. Run eventhandler using timer. Start the timer to run eventhandler
immediately using start. For details, see “Writing and Running Custom Event Handler
Functions with Bloomberg EMSX” on page 1-23.

t = timer("TimerFcn®,{@c.eventhandler}, "Period”,1, ...
"ExecutionMode”, "fixedRate")
start(t)

t is the MATLAB timer object. For details, see timer.

Delete the active shares that are routed but not filled using the Bloomberg EMSX
connection ¢ and routenum. Set the flag "useDefaultEventHandler" to false so
that eventhandler processes the events associated with deleting the active shares.

deleteRoute(c, routenum, "useDefaultEventHandler™, false)

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs. Stop the timer to stop data updates using stop.

4-43

4 Functions — Alphabetical List

4-44

c.Session.unsubscribe(osubs)

c.Session.unsubscribe(rsubs)

stop(t)

Delete the timer if you are done processing data updates using delete.

delete(t)

Close the Bloomberg EMSX connection.

close(c)

Delete Active Shares Using an Options Structure

To delete the active shares that are routed but not filled for a Bloomberg EMSX order:

1 Create the connection € using emsx.
2 Set up an order and route subscription using orders and routes.
3 Create and route an order using createOrderAndRoute.

For an example showing these activities, see “Create and Manage a Bloomberg EMSX
Route” on page 3-16.

Define the structure routenum that contains the order sequence number
EMSX_SEQUENCE for the routed order and route number EMSX_ROUTE__ID.

routenum.EMSX_SEQUENCE
routenum.EMSX_ROUTE_ID

= 335877;

=1;

Create a structure options. To use the default event handler, set the field

useDefaul tEventHandler to true. Set the field timeOut to 200 milliseconds. Delete
the active shares that are routed but not filled using the Bloomberg EMSX connection c,
routenum, and options structure options.

options.useDefaultEventHandler = true;
options.timeOut = 200;

events = deleteRoute(c, routenum,options)

events

STATUS: "1°
MESSAGE: "Route cancellation request sent to broker"®

deleteRoute

The default event handler processes the events associated with deleting the active
shares. deleteRoute returns events as a structure that contains these fields:

* Bloomberg EMSX status
* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.
close(c)

. “Create and Manage a Bloomberg EMSX Order” on page 3-12
. “Create and Manage a Bloomberg EMSX Route” on page 3-16
. “Manage a Bloomberg EMSX Order and Route” on page 3-21

Input Arguments

¢ — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using emsx.

routenum — Route to delete
structure

Route to delete, specified as a structure containing fields EMSX_SEQUENCE and
EMSX_ROUTE_ID.

Example: routenum.EMSX SEQUENCE = 728918;
routenum.EMSX ROUTE_ID = 1;

Data Types: struct

timeout — Timeout value
500 milliseconds (default) | nonnegative integer

4-45

4 Functions — Alphabetical List

4-46

Timeout value, specified as a nonnegative integer. This integer denotes the time in
milliseconds the event handler listens to the queue for an event for each iteration of the
code. The event handler can be a default or custom event handler.

Data Types: double

options — Options for custom event handler or timeout value
structure

Options for custom event handler or timeout value, specified as a structure. To reuse the
settings for specifying a custom event handler or timeout value for the event handler, use
the options structure.

Specify using a custom event handler and a timeout value of 500 milliseconds.

Example: options.useDefaultEventHandler = false;
options.timeOut = 500;

Data Types: struct

Output Arguments

events — Event queue contents
double | structure

Event queue contents, returned as a double or structure.

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

More About

Tips

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.

. “Workflow for Bloomberg EMSX” on page 2-2

. “Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on
page 1-23

deleteRoute

See Also

timer | close | createOrder | createOrderAndRoute | delete | deleteOrder |

emsx | modifyOrder | modifyRoute | orders | routeOrder | routes | start |
stop

Introduced in R2013a

4-47

4 Functions — Alphabetical List

getAllFieldMetaData

Obtain Bloomberg EMSX field information

Syntax

r = getAllFieldMetaData(c)

Description

r = getAllFieldMetaData(c) returns the Bloomberg EMSX field information using
the Bloomberg EMSX connection c.

Examples

Request All Field Information

Create a connection c to the Bloomberg EMSX.
c = emsx("//blp/emapisvc_beta®);

Request all fields supported by Bloomberg EMSX service using the Bloomberg EMSX
connection C.

r = getAllFieldMetaData(c)
r =

EMSX_FIELD_NAME: {113x1 cell}

EMSX_DISP_NAME: {113x1 cell}

EMSX_TYPE: {113x1 cell}
EMSX_LEVEL: [113x1 double]
EMSX_LEN: [113x1 double]

Display all field information for the first Bloomberg EMSX field using a cell array. Create
a cell array from the fields in the returned data structure r.

{r.EMSX_FIELD_NAME{1} r.EMSX_DISP_NAME{1} r.EMSX_TYPE{1} r.EMSX_LEVEL(1) r.EMSX_LEN(1)}

4-48

getAllFieldMetaData

"MSG_TYPE*® "Msg Type*© "String” [O] [1]
Close the Bloomberg EMSX connection.
close(c)

. “Create and Manage a Bloomberg EMSX Order” on page 3-12
. “Create and Manage a Bloomberg EMSX Route” on page 3-16
. “Manage a Bloomberg EMSX Order and Route” on page 3-21

Input Arguments

¢ — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using emsx.

Output Arguments

r — Return information for all fields
structure

Return information for all fields, returned as a structure for all fields supported by
Bloomberg EMSX.

More About
Tips

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.

. “Workflow for Bloomberg EMSX” on page 2-2

See Also

close | createOrder | createOrderAndRoute |
createOrderAndRouteWithStrat | emsx

4-49

4 Functions — Alphabetical List

Introduced in R2013a

4-50

getBrokerlnfo

getBrokerinfo

Obtain Bloomberg EMSX broker and strategy information

Syntax

r = getBrokerlInfo(c,brokerstrat)

Description

r = getBrokerInfo(c,brokerstrat) obtains Bloomberg EMSX broker and strategy
information using the Bloomberg EMSX connection ¢ and broker and strategy request
structure brokerstrat.

Examples

Obtain Broker Information
Create a connection c to the Bloomberg EMSX.
c = emsx("//blp/emapisvc_beta®);

Define the broker and strategy information structure brokerstrat. Obtain broker
information using the Bloomberg EMSX connection ¢ and structure brokerstrat.

brokerstrat.EMSX TICKER = “ABCD US Equity"~;
r = getBrokeriInfo(c,brokerstrat)
r =

EMSX_BROKERS: {2x1 cell}

The EMSX_BROKERS field lists the Bloomberg EMSX brokers.

Close the Bloomberg EMSX connection.

4-51

4 Functions — Alphabetical List

close(c)

Obtain Strategy Information

Create a connection c to the Bloomberg EMSX.
c = emsx("//blp/emapisvc_beta®);

Define the broker and strategy information structure brokerstrat. Obtain strategy
information using the Bloomberg EMSX connection ¢ and structure brokerstrat.

brokerstrat.EMSX_TICKER
brokerstrat.EMSX_BROKER

*ABCD US Equity";
"BMTB";

r = getBrokerInfo(c,brokerstrat)

r =

EMSX_STRATEGIES: {16x1 cell}

The EMSX_STRATEGIES field lists the Bloomberg EMSX strategies.
Close the Bloomberg EMSX connection.
close(c)
Obtain Field Information
Create a connection c to the Bloomberg EMSX.

c = emsx("//blp/emapisvc_beta®);

Define the broker and strategy information structure brokerstrat. Obtain field
information using the Bloomberg EMSX connection ¢ and structure brokerstrat.

brokerstrat_EMSX_TICKER "ABCD US Equity";
brokerstrat_EMSX_BROKER "BMTB" ;
brokerstrat_EMSX_STRATEGY = "SSP-";

r = getBrokerInfo(c,brokerstrat)

r =

FieldName: {3x1 cell}

4-52

getBrokerlnfo

Disable: {3x1 cell}
StringValue: {3x1 cell}

The structure field FieldName lists the Bloomberg EMSX fields. The structure fields
Disable and StringValue contain information about the Bloomberg EMSX fields.

Close the Bloomberg EMSX connection.
close(c)

. “Create and Manage a Bloomberg EMSX Order” on page 3-12
. “Create and Manage a Bloomberg EMSX Route” on page 3-16
. “Manage a Bloomberg EMSX Order and Route” on page 3-21

Input Arguments

¢ — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using emsx.

brokerstrat — Broker and strategy request
structure

Broker and strategy request, specified as a structure that contains Bloomberg

EMSX fields. Use getAl IFieldMetaData to view all available fields for
brokerStrategyStruct.

Example: brokerstrat.EMSX_TICKER = “"ABCD US Equity”~;

Data Types: struct

Output Arguments

r — Broker and strategy information
structure

Broker and strategy information, returned as a structure.

4-53

4 Functions — Alphabetical List

4-54

More About
Tips

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.

“Workflow for Bloomberg EMSX” on page 2-2

See Also

close | createOrder | createOrderAndRoute |
createOrderAndRouteWithStrat | deleteOrder | deleteRoute | emsx |
modifyOrder | orders | routeOrder | routes

Introduced in R2013a

modifyOrder

modifyOrder

Modify Bloomberg EMSX order

Syntax

events = modifyOrder(c,modorder)
events = modifyOrder(c,modorder, "timeOut” ,timeout)

modifyOrder(, "useDefaultEventHandler™ ,false)

= modifyOrder(c,modorder,options)

Description

events = modifyOrder(c,modorder) modifies a Bloomberg EMSX order using
the Bloomberg EMSX connection ¢ and modify order request structure modorder.
modifyOrder returns a status message using the default event handler.

events = modifyOrder(c,modorder, "timeOut” ,timeout) specifies a timeout
value timeout for the execution of the default event handler.

modifyOrder(____ ,"useDefaultEventHandler" ,false) modifies a Bloomberg
EMSX order using any of the input arguments in the previous syntaxes and a custom
event handler. Write a custom event handler to process the events associated with
modifying orders. This syntax does not have an output argument because the custom
event handler processes the contents of the event queue. If you want to use the default
event handler instead, set the flag "useDefaultEventHandler"” to true and use the
events output argument. By default, the flag "useDefaultEventHandler” is set to
true.

___ = modifyOrder(c,modorder,options) uses the options structure
to customize the output, which is useful to preconfigure and save your options
for repeated use. The available options structure fields are timeOut and
useDefaul tEventHandler. Use the events output argument when the flag
useDefaul tEventHandler is set to true and omit this output argument when
useDefaultEventHandler is set to false.

4-55

4 Functions — Alphabetical List

4-56

Examples

Modify an Order Using the Default Event Handler

To modify a Bloomberg EMSX order, create the connection € using emsx, set up the order
subscription using orders, and create an order using createOrder. For an example
showing these activities, see “Create and Manage a Bloomberg EMSX Order” on page
3-12.

Define the structure modorder that contains the order sequence number
EMSX_SEQUENCE, the security EMSX_TICKER, and the number of shares EMSX_AMOUNT.
This code modifies the order number 728905 for 200 shares of IBM. Convert the
numbers to 32-bit signed integers using int32.

modorder .EMSX_SEQUENCE = int32(728905);

modorder .EMSX_TICKER = "IBM";
modorder .EMSX_AMOUNT = int32(200);

Modify the order using the Bloomberg EMSX connection ¢ and modorder.
events = modifyOrder(c,modorder)

events =

EMSX_SEQUENCE: 728905
MESSAGE: "Order Modified”

The default event handler processes the events associated with modifying the order.
modifyOrder returns events as a structure that contains these fields:

* Bloomberg EMSX order number
+ Bloomberg EMSX message

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
This code assumes that orders creates subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.

modifyOrder

close(c)
Modify an Order Using a Timeout

To modify a Bloomberg EMSX order, create the connection ¢ using emsx, set up the order
subscription using orders, and create an order using createOrder. For an example
showing these activities, see “Create and Manage a Bloomberg EMSX Order” on page
3-12.

Define the structure modorder that contains the order sequence number
EMSX_SEQUENCE, the security EMSX_TICKER, and the number of shares EMSX_AMOUNT.
This code modifies the order number 728905 for 200 shares of IBM. Convert the
numbers to 32-bit signed integers using int32.

modorder .EMSX_SEQUENCE = int32(728905);

modorder .EMSX_TICKER "1BM*;
modorder .EMSX_AMOUNT int32(200);

Modify the order using the Bloomberg EMSX connection ¢ and modorder. Set the
timeout value to 200 milliseconds.

events = modifyOrder(c,modorder, "timeOut”,200)

events =

EMSX_SEQUENCE: 728905
MESSAGE: "Order Modified”

The default event handler processes the events associated with modifying the order.
modifyOrder returns events as a structure that contains these fields:

* Bloomberg EMSX order number
+ Bloomberg EMSX message

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
This code assumes that orders creates subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.

4-57

4 Functions — Alphabetical List

4-58

close(c)
Modify an Order Using a Custom Event Handler

To modify a Bloomberg EMSX order, create the Bloomberg EMSX connection c
using emsx, set up the order subscription using orders, and create an order using
createOrder. For an example showing these activities, see “Create and Manage a
Bloomberg EMSX Order” on page 3-12.

Define the structure modorder that contains the order sequence number
EMSX_SEQUENCE, the security EMSX_TICKER, and the number of shares EMSX_AMOUNT.
This code modifies the order number 728905 for 200 shares of IBM. Convert the
numbers to 32-bit signed integers using int32.

modorder .EMSX_SEQUENCE = int32(728905);
modorder .EMSX_TICKER "I1BM";
modorder .EMSX_AMOUNT int32(200);

Suppose you create a custom event handler function called eventhandler with input
argument c. Run eventhandler using timer. Start the timer to run eventhandler
immediately using start. For details, see “Writing and Running Custom Event Handler
Functions with Bloomberg EMSX” on page 1-23.

t = timer("TimerFcn®,{@c-eventhandler}, "Period”,1, ...
"ExecutionMode®, "fixedRate")
start(t)

t is the MATLAB timer object. For details, see timer.

Modify the order using the Bloomberg EMSX connection ¢ and modorder. Set the flag
"useDefaultEventHandler"® to false so that eventhandler processes the events
associated with modifying an order.

modifyOrder(c,modorder, "useDefaultEventHandler™, false)

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
This code assumes that orders creates subs. Stop the timer to stop data updates using
stop.

c.Session.unsubscribe(subs)
stop(t)

Delete the timer if you are done processing data updates using delete.

delete(t)

modifyOrder

Close the Bloomberg EMSX connection.

close(c)
Modify an Order Using an Options Structure

To modify a Bloomberg EMSX order, create the connection Cc using emsx, set up the order
subscription using orders, and create an order using createOrder. For an example
showing these activities, see “Create and Manage a Bloomberg EMSX Order” on page
3-12.

Define the structure modorder that contains the order sequence number
EMSX_SEQUENCE, the security EMSX_TICKER, and the number of shares EMSX_AMOUNT.
This code modifies the order number 728905 for 200 shares of IBM. Convert the
numbers to 32-bit signed integers using Int32.

modorder .EMSX_SEQUENCE = int32(728905);
modorder .EMSX_TICKER "I1BM";
modorder .EMSX_AMOUNT int32(200);

Create a structure options. To use the default event handler, set the field

useDefaul tEventHandler to true. Set the field timeOut to 200 milliseconds. Modify
the order using the Bloomberg EMSX connection ¢, modorder, and options structure
options.

options.useDefaultEventHandler = true;
options.timeOut = 200;

events = modifyOrder(c,modorder ,options)

events

EMSX_SEQUENCE: 728905
MESSAGE: "Order Modified”

The default event handler processes the events associated with modifying the order.
modifyOrder returns events as a structure that contains these fields:

+ Bloomberg EMSX order number
* Bloomberg EMSX message

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
This code assumes that orders creates subs.

4-59

4 Functions — Alphabetical List
P

c.Session.unsubscribe(subs)
Close the Bloomberg EMSX connection.
close(c)

. “Create and Manage a Bloomberg EMSX Order” on page 3-12
. “Create and Manage a Bloomberg EMSX Route” on page 3-16
. “Manage a Bloomberg EMSX Order and Route” on page 3-21

Input Arguments

¢ — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using emsx.
modorder — Modify order request

structure

Modify order request, specified as a structure that contains these fields.

Use getAl IFieldMetaData to view all available fields for modorder. Convert the
numbers to 32-bit signed integers using int32.

Field Description

EMSX_SEQUENCE Bloomberg EMSX order sequence number
EMSX_TICKER Bloomberg EMSX ticker symbol
EMSX_AMOUNT Bloomberg EMSX number of shares

Example: modorder .EMSX _SEQUENCE = int32(728905);
modorder .EMSX_TICKER "XYZ*;
modorder .EMSX_AMOUNT int32(100);

Data Types: struct

timeout — Timeout value
500 milliseconds (default) | nonnegative integer

4-60

modifyOrder

Timeout value, specified as a nonnegative integer. This integer denotes the time in
milliseconds the event handler listens to the queue for an event for each iteration of the
code. The event handler can be a default or custom event handler.

Data Types: double

options — Options for custom event handler or timeout value
structure

Options for custom event handler or timeout value, specified as a structure. To reuse the
settings for specifying a custom event handler or timeout value for the event handler, use
the options structure.

Specify using a custom event handler and a timeout value of 500 milliseconds.

Example: options.useDefaultEventHandler = false;
options.timeOut = 500;

Data Types: struct

Output Arguments

events — Event queue contents
double | structure

Event queue contents, returned as a double or structure.

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

More About
Tips

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.
. “Workflow for Bloomberg EMSX” on page 2-2

. “Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on
page 1-23

4-61

4 Functions — Alphabetical List

See Also

timer | close | createOrder | createOrderAndRoute |
createOrderAndRouteWithStrat | delete | deleteOrder | deleteRoute | emsx
| orders | routeOrder | routes | start | stop

Introduced in R2013a

4-62

modifyRoute

modifyRoute

Modify Bloomberg EMSX route

Syntax

events = modifyRoute(c,modroute)
events = modifyRoute(c,modroute, "timeOut” ,timeout)

modi fyRoute(, "useDefaultEventHandler” ,false)

= modifyRoute(c,modroute,options)

Description

events = modifyRoute(c,modroute) modifies a Bloomberg EMSX route using the
Bloomberg EMSX connection ¢ and route request modroute. modifyRoute returns a
status message using the default event handler.

events = modifyRoute(c,modroute, "timeOut”,timeout) specifies a timeout
value timeout for the execution of the default event handler.

modifyRoute(___ , "useDefaultEventHandler®,false) modifies a Bloomberg
EMSX route using any of the input arguments in the previous syntaxes and a custom
event handler. Write a custom event handler to process the events associated with
modifying routes. This syntax does not have an output argument because the custom
event handler processes the contents of the event queue. If you want to use the default
event handler instead, set the flag "useDefaultEventHandler"” to true and use the
events output argument. By default, the flag "useDefaultEventHandler” is set to
true.

_ = modifyRoute(c,modroute,options) uses the options structure
to customize the output, which is useful to preconfigure and save your options
for repeated use. The available options structure fields are timeOut and
useDefaul tEventHandler. Use the events output argument when the flag
useDefaul tEventHandler is set to true and omit this output argument when
useDefaultEventHandler is set to false.

4-63

4 Functions — Alphabetical List

4-64

Examples

Modify a Route Using the Default Event Handler
To modify a route for a Bloomberg EMSX order:

+ Create the connection Cc using emsx.
* Set up the order and route subscription using orders and routes.
+ Create and route the order using createOrderAndRoute.

For an example showing these activities, see “Manage a Bloomberg EMSX Order and
Route” on page 3-21.

Define the modroute structure that contains these fields:

+ Bloomberg EMSX order sequence number EMSX_SEQUENCE

* Bloomberg EMSX ticker symbol EMSX_TICKER

* Bloomberg EMSX number of shares EMSX_AMOUNT

* Bloomberg EMSX route identifier EMSX_ROUTE_ 1D

This code instructs Bloomberg EMSX to route 100 shares of IBM for order sequence

number 731128 and route identifier 1. Convert the numbers to 32-bit signed integers
using Int32.

modroute.EMSX_SEQUENCE = int32(731128)

modroute .EMSX_TICKER = " IBM";
modroute .EMSX_AMOUNT = int32(100);
modroute.EMSX_ROUTE_ID = int32(1);

Modify the route using the Bloomberg EMSX connection ¢ and modroute.
events = modifyRoute(c,modroute)

events =

EMSX_SEQUENCE: 0
EMSX_ROUTE_ID: O
MESSAGE: "Route modified"

The default event handler processes the events associated with modifying a route.
modi fyRoute returns events as a structure that contains these fields:

modifyRoute

* Bloomberg EMSX order number
* Bloomberg EMSX route identifier
* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.
close(c)

Modify a Route Using a Timeout

To modify a route for a Bloomberg EMSX order:

+ Create the connection Cc using emsx.
* Set up the order and route subscription using orders and routes.
+ Create and route the order using createOrderAndRoute.

For an example showing these activities, see “Manage a Bloomberg EMSX Order and
Route” on page 3-21.

Define the modroute structure that contains these fields:

* Bloomberg EMSX order sequence number EMSX_ SEQUENCE
* Bloomberg EMSX ticker symbol EMSX_TICKER

* Bloomberg EMSX number of shares EMSX_AMOUNT

* Bloomberg EMSX route identifier EMSX_ROUTE_ 1D

This code modifies the route to 100 shares of IBM for order sequence number 731128
and route identifier 1. Convert the numbers to 32-bit signed integers using int32.

modroute.EMSX_SEQUENCE = int32(731128)
modroute .EMSX_TICKER = "IBM";

modroute .EMSX_AMOUNT = int32(100);
modroute .EMSX_ROUTE_ID = int32(1);

4-65

4 Functions — Alphabetical List

4-66

Modify the route using the Bloomberg EMSX connection ¢ and modroute. Set the
timeout value to 200 milliseconds.

events = modifyRoute(c,modroute, "timeOut”,200)

events =

EMSX_SEQUENCE: O
EMSX_ROUTE_ID: O
MESSAGE: "Route modified”

The default event handler processes the events associated with modifying a route.
modifyRoute returns events as a structure that contains these fields:

* Bloomberg EMSX order number
* Bloomberg EMSX route identifier
* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.
close(c)

Modify a Route Using a Custom Event Handler

To modify a route for a Bloomberg EMSX order:

+ Create the connection c using emsx.
* Set up the order and route subscription using orders and routes.
* Create and route the order using createOrderAndRoute.

For an example showing these activities, see “Manage a Bloomberg EMSX Order and
Route” on page 3-21.

Define the modroute structure that contains these fields:

* Bloomberg EMSX order sequence number EMSX SEQUENCE

modifyRoute

* Bloomberg EMSX ticker symbol EMSX_TICKER
* Bloomberg EMSX number of shares EMSX_AMOUNT
* Bloomberg EMSX route identifier EMSX_ROUTE_ 1D

This code modifies the route to 100 shares of IBM for order sequence number 731128
and route identifier 1. Convert the numbers to 32-bit signed integers using int32.

modroute.EMSX_SEQUENCE = int32(731128)
modroute .EMSX_TICKER "1BM*;

modroute .EMSX_AMOUNT int32(100);
modroute .EMSX_ROUTE_ID = int32(1);

Suppose you create a custom event handler function called eventhandler with input
argument c. Run eventhandler using timer. Start the timer to run eventhandler
immediately using start. For details, see “Writing and Running Custom Event Handler
Functions with Bloomberg EMSX” on page 1-23.

t = timer("TimerFcn”®,{@c.eventhandler}, "Period”,1,...

"ExecutionMode”, "fixedRate")
start(t)

t is the MATLAB timer object. For details, see timer.

Modify the route using the Bloomberg EMSX connection ¢ and modroute. Set the flag
"useDefaultEventHandler"™ to false so that eventhandler processes the events
associated with modifying a route.

modifyRoute(c,modroute, “"useDefaultEventHandler®, false)

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs. Stop the timer to stop data updates using stop.

c.Session.unsubscribe(osubs)

c.Session.unsubscribe(rsubs)

stop(t)

Delete the timer if you are done processing data updates using delete.

delete(t)

Close the Bloomberg EMSX connection.

4-67

4 Functions — Alphabetical List

close(c)
Modify a Route Using an Options Structure
To modify a route for a Bloomberg EMSX order:

+ Create the connection c using emsx.
* Set up the order and route subscription using orders and routes.
+ Create and route the order using createOrderAndRoute.

For an example showing these activities, see “Manage a Bloomberg EMSX Order and
Route” on page 3-21.

Define the modroute structure that contains these fields:

* Bloomberg EMSX order sequence number EMSX SEQUENCE
* Bloomberg EMSX ticker symbol EMSX_TICKER

* Bloomberg EMSX number of shares EMSX_AMOUNT

+ Bloomberg EMSX route identifier EMSX_ROUTE_ID

This code modifies the route to 100 shares of IBM for order sequence number 731128
and route identifier 1. Convert the numbers to 32-bit signed integers using int32.

modroute.EMSX_SEQUENCE = int32(731128)

modroute .EMSX_TICKER = "IBM";
modroute.EMSX_AMOUNT = int32(100);
modroute.EMSX_ROUTE_ID = int32(1);

Create a structure options. To use the default event handler, set the field
useDefaultEventHandler to true. Set the field timeOut to 200 milliseconds. Modify
the route using the Bloomberg EMSX connection ¢, modroute, and options structure
options.

options.useDefaul tEventHandler = true;
options.timeOut = 200;

events = modifyRoute(c,modroute,options)
events =
EMSX_SEQUENCE: 0

EMSX_ROUTE_ID: O
MESSAGE: "Route modified"

4-68

modifyRoute

The default event handler processes the events associated with modifying a route.
mod i fyRoute returns events as a structure that contains these fields:

+ Bloomberg EMSX order number
* Bloomberg EMSX route identifier
* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.
close(c)

. “Create and Manage a Bloomberg EMSX Order” on page 3-12
. “Create and Manage a Bloomberg EMSX Route” on page 3-16
. “Manage a Bloomberg EMSX Order and Route” on page 3-21

Input Arguments

¢ — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using emsx.

modroute — Modify route request
structure

Modify route request, specified as a structure with these fields.

Use getAllFieldMetaData to view all available fields for modroute. Convert the
numbers to 32-bit signed integers using int32.

Field Description
EMSX_SEQUENCE Bloomberg EMSX order sequence number

4-69

4 Functions — Alphabetical List
P

4-70

Field Description

EMSX_TICKER Bloomberg EMSX ticker symbol
EMSX_AMOUNT Bloomberg EMSX number of shares
EMSX_ROUTE_ID Bloomberg EMSX route identifier

Example: modroute .EMSX_SEQUENCE = int32(731128);
modroute.EMSX_TICKER "XYZ*";

modroute .EMSX_ AMOUNT int32(100);
modroute.EMSX ROUTE ID = int32(1);

Data Types: struct

timeout — Timeout value
500 milliseconds (default) | nonnegative integer

Timeout value, specified as a nonnegative integer. This integer denotes the time in
milliseconds the event handler listens to the queue for an event for each iteration of the
code. The event handler can be a default or custom event handler.

Data Types: double

options — Options for custom event handler or timeout value
structure

Options for custom event handler or timeout value, specified as a structure. To reuse the
settings for specifying a custom event handler or timeout value for the event handler, use
the options structure.

Specify using a custom event handler and a timeout value of 500 milliseconds.

Example: options.useDefaultEventHandler = false;
options.timeOut = 500;

Data Types: struct

Output Arguments

events — Event queue contents
double | structure

Event queue contents, returned as a double or structure.

modifyRoute

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

More About
Tips

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.
. “Workflow for Bloomberg EMSX” on page 2-2

. “Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on
page 1-23

See Also
timer | createOrder | createOrderAndRoute | delete | deleteOrder |
modifyRouteWithStrat | orders | routes | start | stop

Introduced in R2013a

4-71

4 Functions — Alphabetical List

modifyRouteWithStrat

Modify route with strategies for Bloomberg EMSX

Syntax

events = modifyRouteWithStrat(c,modroute,strat)
events modifyRouteWithStrat(c,modroute,strat, "timeOut”, timeout)

modi fyRouteWithStrat(, "useDefaultEventHandler" ,false)

= modifyRouteWithStrat(c,modroute,strat,options)

Description

events = modifyRouteWithStrat(c,modroute,strat) modifies a Bloomberg
EMSX route with strategies using the Bloomberg EMSX connection ¢, route request
modroute, and order strategy strat. modifyRouteWithStrat returns the order
sequence number, route identifier, and status message using the default event handler.

events = modifyRouteWithStrat(c,modroute,strat, "timeOut”,timeout)
specifies a timeout value timeout for the execution of the default event handler.

modifyRouteWithStrat(___ , "useDefaultEventHandler" ,false) modifies
a Bloomberg EMSX route with strategies using any of the input arguments in the
previous syntaxes and a custom event handler. Write a custom event handler to
process the events associated with modifying routes. This syntax does not have

an output argument because the custom event handler processes the contents of
the event queue. If you want to use the default event handler instead, set the flag
"useDefaultEventHandler" to true and use the events output argument. By
default, the flag "useDefaultEventHandler” is set to true.

____ = modifyRouteWithStrat(c,modroute,strat,options) uses the
options structure to customize the output, which is useful to preconfigure and save
your options for repeated use. The available options structure fields are timeOut
and useDefaul tEventHandler. Use the events output argument when the flag
useDefaul tEventHandler is set to true and omit this output argument when
useDefaultEventHandler is set to false.

4-72

modifyRouteWithStrat

Examples

Modify a Route with Strategies Using the Default Event Handler
To modify a route for a Bloomberg EMSX order with strategies:

+ Create the connection Cc using emsx.
* Set up the order and route subscription using orders and routes.
+ Create and route the order using createOrderAndRoute.

For an example showing these activities, see “Manage a Bloomberg EMSX Order and
Route” on page 3-21.

Define the modroute structure that contains these fields:

* Bloomberg EMSX order sequence number EMSX SEQUENCE
* Bloomberg EMSX ticker symbol EMSX_TICKER

* Bloomberg EMSX number of shares EMSX_AMOUNT

+ Bloomberg EMSX route identifier EMSX_ROUTE_ID

This code modifies the route to 100 shares of IBM for order sequence number 731128
and route identifier 1. Convert the numbers to 32-bit signed integers using int32.

modroute.EMSX_SEQUENCE = int32(731128)

modroute.EMSX_TICKER = "IBM";
modroute .EMSX_AMOUNT = int32(100);
modroute .EMSX_ROUTE_ID = int32(1);

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using int32.

strat.EMSX_STRATEGY _NAME = "SSP";
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 O 0]);
strat.EMSX_STRATEGY_FIELDS = {"09:30:00","14:30:00",50%};

Modify the route using the Bloomberg EMSX connection ¢, modroute, and strat.
events = modifyRouteWithStrat(c,modroute,strat)

events =

EMSX_SEQUENCE: O
EMSX_ROUTE_ID: O

4-73

4 Functions — Alphabetical List

4-74

MESSAGE: "Route modified"

The default event handler processes the events associated with modifying a route.
modifyRouteWithStrat returns events as a structure that contains these fields:

* Bloomberg EMSX order number
* Bloomberg EMSX route identifier
* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)

Modify a Route with Strategies Using a Timeout

To modify a route for a Bloomberg EMSX order with strategies:

+ Create the connection c using emsx.
* Set up the order and route subscription using orders and routes.
+ Create and route the order using createOrderAndRoute.

For an example showing these activities, see “Manage a Bloomberg EMSX Order and
Route” on page 3-21.

Define the modroute structure that contains these fields:

* Bloomberg EMSX order sequence number EMSX_ SEQUENCE
* Bloomberg EMSX ticker symbol EMSX_TICKER

* Bloomberg EMSX number of shares EMSX_AMOUNT

* Bloomberg EMSX route identifier EMSX_ROUTE_ 1D

This code modifies the route to 100 shares of IBM for order sequence number 731128
and route identifier 1. Convert the numbers to 32-bit signed integers using int32.

modroute_.EMSX_SEQUENCE = int32(731128)

modifyRouteWithStrat

modroute .EMSX_TICKER "1BM*;
modroute .EMSX_AMOUNT int32(100);
modroute .EMSX_ROUTE_ID = int32(1);

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using Int32.

strat.EMSX_STRATEGY _NAME = "SSP";
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 O 0]);
strat.EMSX_STRATEGY_FIELDS = {"09:30:00","14:30:00",50%};

Modify the route using the Bloomberg EMSX connection ¢, modroute, and strat. Set
the timeout value to 200 milliseconds.

events = modifyRouteWithStrat(c,modroute,strat, "timeOut”,200)

events =

EMSX_SEQUENCE: 0
EMSX_ROUTE_ID: O
MESSAGE: "Route modified”

The default event handler processes the events associated with modifying a route.
modi fyRouteWithStrat returns events as a structure that contains these fields:

+ Bloomberg EMSX order number
+ Bloomberg EMSX route identifier
* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)

Modify a Route with Strategies Using a Custom Event Handler

To modify a route for a Bloomberg EMSX order with strategies:

+ Create the connection Cc using emsx.

4-75

4 Functions — Alphabetical List

* Set up the order and route subscription using orders and routes.
* Create and route the order using createOrderAndRoute.

For an example showing these activities, see “Manage a Bloomberg EMSX Order and
Route” on page 3-21.

Define the modroute structure that contains these fields:

* Bloomberg EMSX order sequence number EMSX_ SEQUENCE
* Bloomberg EMSX ticker symbol EMSX_TICKER

* Bloomberg EMSX number of shares EMSX_AMOUNT

* Bloomberg EMSX route identifier EMSX_ROUTE_ 1D

This code modifies the route to 100 shares of IBM for order sequence number 731128
and route identifier 1. Convert the numbers to 32-bit signed integers using int32.

modroute.EMSX_SEQUENCE = int32(731128)
modroute .EMSX_TICKER = " IBM";

modroute .EMSX_AMOUNT = int32(100);
modroute.EMSX_ROUTE_ID = int32(1);

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using int32.

strat.EMSX_STRATEGY NAME = "SSP";
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 O 0]);
strat.EMSX_STRATEGY FIELDS = {"09:30:00","14:30:00",50};

Suppose you create a custom event handler function called eventhandler with input
argument c. Run eventhandler using timer. Start the timer to run eventhandler
immediately using start. For details, see “Writing and Running Custom Event Handler
Functions with Bloomberg EMSX” on page 1-23.

t = timer("TimerFcn®,{@c-eventhandler}, "Period”,1, ...
"ExecutionMode®, "fixedRate")
start(t)

t is the MATLAB timer object. For details, see timer.

Modify the route using the Bloomberg EMSX connection ¢, modroute, and strat. Set
the flag "useDefaultEventHandler® to false so that eventhandler processes the
events associated with modifying a route.

4-76

modifyRouteWithStrat

modifyRouteWithStrat(c,modroute,strat, "useDefaul tEventHandler® ,false)

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs. Stop the timer to stop data updates using stop.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)
stop(t)

Delete the timer if you are done processing data updates using delete.
delete(t)

Close the Bloomberg EMSX connection.

close(c)

Modify a Route with Strategies Using an Options Structure

To modify a route for a Bloomberg EMSX order with strategies:

* Create the connection € using emsx.
* Set up the order and route subscription using orders and routes.
* Create and route the order using createOrderAndRoute.

For an example showing these activities, see “Manage a Bloomberg EMSX Order and
Route” on page 3-21.

Define the modroute structure that contains these fields:

+ Bloomberg EMSX order sequence number EMSX_SEQUENCE
* Bloomberg EMSX ticker symbol EMSX_TICKER

* Bloomberg EMSX number of shares EMSX_AMOUNT

+ Bloomberg EMSX route identifier EMSX_ROUTE_ID

This code modifies the route to 100 shares of IBM for order sequence number 731128
and route identifier 1. Convert the numbers to 32-bit signed integers using int32.

modroute_.EMSX_SEQUENCE = int32(731128)

modroute.EMSX_TICKER = "IBM";
modroute.EMSX_AMOUNT = int32(100);
modroute.EMSX_ROUTE_ID = int32(1);

4-77

4 Functions — Alphabetical List

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using Int32.

strat.EMSX_STRATEGY_NAME = "SSP*;
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 O 01);
strat.EMSX_STRATEGY_FIELDS = {"09:30:007,"14:30:00",50};

Create a structure options. To use the default event handler, set the field

useDefaul tEventHandler to true. Set the field timeOut to 200 milliseconds. Modify
the route using the Bloomberg EMSX connection ¢, modroute, strat, and options
structure options.

options.useDefaultEventHandler = true;
options.timeOut = 200;

events = modifyRouteWithStrat(c,modroute,strat,options)

events

EMSX_SEQUENCE: 0
EMSX_ROUTE_ID: O
MESSAGE: "Route modified”

The default event handler processes the events associated with modifying a route.
modifyRouteWithStrat returns events as a structure that contains these fields:

* Bloomberg EMSX order number
* Bloomberg EMSX route identifier
* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.
close(c)

. “Create and Manage a Bloomberg EMSX Order” on page 3-12
. “Create and Manage a Bloomberg EMSX Route” on page 3-16

4-78

modifyRouteWithStrat

. “Manage a Bloomberg EMSX Order and Route” on page 3-21

Input Arguments

¢ — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using emsx.

modroute — Modify route request
structure

Modify route request, specified as a structure with these fields.

Use getAlIFieldMetaData to view all available fields for modroute. Convert the
numbers to 32-bit signed integers using Int32.

Field Description

EMSX_SEQUENCE Bloomberg EMSX order sequence number
EMSX_TICKER Bloomberg EMSX ticker symbol
EMSX_AMOUNT Bloomberg EMSX number of shares
EMSX_ROUTE_ID Bloomberg EMSX route identifier

Example: modroute .EMSX SEQUENCE = int32(731128);
modroute.EMSX TICKER = "XYZ";

modroute.EMSX AMOUNT = int32(100);
modroute.EMSX_ROUTE_ID = int32(1);

Data Types: struct

strat — Order strategies
structure

Order strategies, specified as a structure that contains the fields:
EMSX_STRATEGY_NAME, EMSX_STRATEGY_FIELD_INDICATORS, and
EMSX_STRATEGY_FIELDS. The structure field values must align with the strategy fields
specified by EMSX_STRATEGY_NAME. For details about strategy fields and ordering, see
getBrokerInfo.

4-79

4 Functions — Alphabetical List
P

4-80

Convert EMSX_STRATEGY_FIELD_INDICATORS to a 32-bit signed integer using int32.

Set EMSX_STRATEGY_FIELD_INDICATORS equal to O for each field to use the field data
setting in EMSX_FI1ELD_DATA. Or, set EMSX_STRATEGY_FIELD_INDICATORS equal to 1
to ignore the data in EMSX_FI1ELD_DATA.

Example: strat.EMSX_STRATEGY_NAME = "SSP*";
strat.EMSX _STRATEGY_FIELD INDICATORS = int32(JO0 0 0]);
strat.EMSX_STRATEGY_FIELDS = {"09:30:00","14:30:00",50};

Data Types: struct

timeout — Timeout value
500 milliseconds (default) | nonnegative integer

Timeout value, specified as a nonnegative integer. This integer denotes the time in
milliseconds the event handler listens to the queue for an event for each iteration of the
code. The event handler can be a default or custom event handler.

Data Types: double

options — Options for custom event handler or timeout value
structure

Options for custom event handler or timeout value, specified as a structure. To reuse the
settings for specifying a custom event handler or timeout value for the event handler, use
the options structure.

Specify using a custom event handler and a timeout value of 500 milliseconds.

Example: options.useDefaul tEventHandler = false;
options.timeOut = 500;

Data Types: struct

Output Arguments

events — Event queue contents
double | structure

Event queue contents, returned as a double or structure.

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

modifyRouteWithStrat

More About
Tips

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.
. “Workflow for Bloomberg EMSX” on page 2-2

. “Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on
page 1-23

See Also
timer | createOrder | createOrderAndRouteWithStrat | delete | deleteOrder
| getBrokerlInfo | modifyRoute | orders | routeOrder | routes | start | stop

Introduced in R2013a

4-81

4 Functions — Alphabetical List

4-82

orders

Obtain Bloomberg EMSX order subscription

Syntax
[events,subs] = orders(c,fields)
[events,subs] = orders(c,fields,Name,Value)

[events,subs] = orders(c,fields,options)

Description

[events, subs] orders(c, Fields) subscribes to Bloomberg EMSX fields fields
using the Bloomberg EMSX connection Cc. orders returns existing event data events
from the event queue and the Bloomberg EMSX subscription list subs.

[events,subs] = orders(c,fields,Name,Value) uses additional options specified
by one or more Name,Value pair arguments to specify a custom event handler or timeout
value for the event handler.

[events,subs] = orders(c,fields,options) uses the options structure to
customize the output, which is useful to preconfigure and save your options for repeated
use. The options structure fields and values correspond to names and values of name-
value pair arguments, respectively.

Examples

Subscribe to Order Events Using the Default Event Handler
Create the Bloomberg EMSX connection c.
c = emsx("//blp/emapisvc_beta®);

Subscribe to events for Bloomberg EMSX orders using the Bloomberg EMSX connection c
and Bloomberg EMSX field list Fields.

orders

fields = {"EMSX_BROKER", "EMSX_AMOUNT", "EMSX_FILLED"};

[events,subs] = orders(c,fields)

events =
MSG_TYPE: {"E"}
MSG_SUB_TYPE: {"0"}
EVENT_STATUS: 4
subs =

com.bloomberglp.blpapi.SubscriptionList@4bc3dc78

events contains fields for the events currently in the event queue. subs contains the
Bloomberg EMSX subscription list object.

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
c.Session.unsubscribe(subs)
Close the Bloomberg EMSX connection.
close(c)
Subscribe to Order Events Using the Custom Event Handler
Create the Bloomberg EMSX connection C.
c = emsx("//blp/emapisvc_beta®);

Write a custom event handler function named eventhandler. Run the custom event
handler using timer. Start the timer to run eventhandler immediately using start.
For details, see “Writing and Running Custom Event Handler Functions with Bloomberg
EMSX” on page 1-23.

t = timer("TimerFcn®,{@c.eventhandler}, "Period”,1, ...
"ExecutionMode”, "fixedRate");
start(t)

t is the timer object.

Subscribe to events for Bloomberg EMSX orders using the Bloomberg EMSX connection
¢ and Bloomberg EMSX field list Fields. Use the custom event handler by setting the
name-value pair argument "useDefaultEventHandler” to false.

4-83

4 Functions — Alphabetical List

fields = {"EMSX_BROKER", "EMSX_AMOUNT", "EMSX_FILLED"};

[events,subs] = orders(c, fields, “useDefaultEventHandler®,false)

events =

L1

subs =
com.bloomberglp.blpapi.SubscriptionList@2c5blc7e

events contains an empty double. The custom event handler processes the event queue.
subs contains the Bloomberg EMSX subscription list object.

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
Stop the timer to stop data updates using stop.

c.Session.unsubscribe(subs)
stop(t)

Delete the timer if you are done processing data updates using delete.
delete(t)
Close the Bloomberg EMSX connection.
close(c)
Subscribe to Order Events Using a Timeout
Create the Bloomberg EMSX connection c.
c = emsx("//blp/emapisvc_beta™);

Subscribe to events for Bloomberg EMSX orders using the Bloomberg EMSX connection ¢
and Bloomberg EMSX field list Fields. Specify the name-value pair argument timeQOut
and set it to 200 milliseconds.

fields = {"EMSX_BROKER", "EMSX_AMOUNT", "EMSX_FILLED"};

[events,subs] = orders(c, fields, "timeOut”,200)

events =

4-84

orders

MSG_TYPE: {"E
MSG_SUB_TYPE: {"0
EVENT_STATUS: 4

"}
"}

subs =

com_bloomberglp.-blpapi.SubscriptionList@4bc3dc78

events contains fields for the events currently in the event queue. subs contains the
Bloomberg EMSX subscription list object.

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.

close(c)
Subscribe to Order Events Using the Options Structure

Create the Bloomberg EMSX connection c.
c = emsx("//blp/emapisvc_beta®);

Create a structure options. To use the default event handler, set the field
useDefaultEventHandler to true. Set the field timeOut to 200 milliseconds.
Subscribe to events for Bloomberg EMSX orders using the Bloomberg EMSX connection
c, Bloomberg EMSX field list Fields, and options structure options.

options.timeOut = 200;
options.useDefaultEventHandler = true;

fields = {"EMSX_BROKER", "EMSX_AMOUNT", "EMSX_FILLED"};
[events,subs] = orders(c,fields,options)
events =

MSG_TYPE: {"E

"}
MSG_SUB_TYPE: {"0"}
EVENT_STATUS: 4

4-85

4 Functions — Alphabetical List

4-86

subs =
com_bloomberglp.blpapi.SubscriptionList@4bc3dc78

events contains fields for the events currently in the event queue. subs contains the
Bloomberg EMSX subscription list object.

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.
close(c)

. “Create and Manage a Bloomberg EMSX Order” on page 3-12
. “Create and Manage a Bloomberg EMSX Route” on page 3-16
. “Manage a Bloomberg EMSX Order and Route” on page 3-21

Input Arguments

¢ — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using emsx.

fields — Bloomberg EMSX field information

cell array

Bloomberg EMSX field information, specified using a cell array. Use
getAlIFieldMetaData to view available field information for the Bloomberg EMSX
service.

Example: "EMSX_TICKER"
"EMSX_AMOUNT*
"EMSX_ORDER_TYPE*

Data Types: cell

options — Options for custom event handler or timeout value
structure

orders

Options for custom event handler or timeout value, specified as a structure. Use the
options structure instead of name-value pair arguments to reuse the optional name-value
pair arguments to specify a custom event handler or timeout value for the event handler.

The options structure field and values correspond to names and values of the name-
value pair arguments, respectively.

Specify using a custom event handler and a timeout value of 500 milliseconds.

Example: options.useDefaultEventHandler = false;
options.timeOut = 500;

Data Types: struct

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (* 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

Example: "useDefaultEventHandler* ,false

"useDefaultEventHandler™ — Flag for event handler preference
true (default) | false

Flag for event handler preference, indicating whether to use the default or custom event
handler to process order events, specified as the comma-separated pair consisting of
"useDefaultEventHandler™ and the logical values true or false.

To specify the default event handler, set this flag to true.
Otherwise, set this flag to False to specify a custom event handler.
Data Types: logical

"timeOut” — Timeout value for event handler
500 milliseconds (default) | nonnegative integer

Timeout value for event handler for the Bloomberg EMSX service, specified as the
comma-separated pair consisting of "timeOut” and a nonnegative integer in units of
milliseconds.

Example: "timeOut” ,200

4-87

4 Functions — Alphabetical List

4-88

Data Types: double

Output Arguments

events — Event queue contents
double | structure

Event queue contents, returned as a double or structure.

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

When the name-value pair argument "useDefaultEventHandler” or the same field
for the structure options is set to false, events is an empty double.

subs — Bloomberg EMSX subscription list
subscription list object

Bloomberg EMSX subscription list, returned as a Bloomberg EMSX subscription list
object.

More About

Tips

* For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using
the WAPI <GO> option from the Bloomberg terminal.

. “Workflow for Bloomberg EMSX” on page 2-2

. “Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on
page 1-23

See Also

timer | close | createOrder | createOrderAndRoute
createOrderAndRouteWithStrat | delete | deleteOrder | deleteRoute | emsx
| getAllFieldMetaData | modifyOrder | routeOrder | routes | start | stop

Introduced in R2013a

emsxOrderBlotter

emsxOrderBlotter

Bloomberg EMSX example order blotter

Syntax

[t,subs] = emsxOrderBlotter(c)

Description

[t,subs] = emsxOrderBlotter(c) displays a trader's order information. c is the
Bloomberg EMSX connection, t is the timer object associated with the event handler, and
subs is the Bloomberg EMSX subscription list.

Examples

Display the Order in an Order Blotter

Create the Bloomberg EMSX connection cC.
c = emsx("//blp/emapisvc_beta®);

Open Bloomberg EMSX order blotter using the Bloomberg EMSX connection C.
[t,subs] = emsxOrderBlotter(c)

Timer Object: timer-1

Timer Settings

ExecutionMode: fixedRate
Period: 1

BusyMode: drop
Running: on

Callbacks
TimerFcn: {@processEventToBlotter [1x1 emsx]}
ErrorFcn: **
StartFcn: **

4-89

4 Functions — Alphabetical List
P

4-90

StopFcn:

subs =
com_bloomberglp.-blpapi.SubscriptionList@3e24da58

emsxOrderBlotter returns the timer object output and the Bloomberg EMSX
subscription list object. For details about the timer object, see timer.

-
I} EMSX Order Blotter T ‘ =) B o
File Edit View Insert Tools Desktop Window Help .
SEQUENCE | TICKER SIDE TYPE | WORKING | FILLED IF BROKER | STATUS | HANDLING | AVGPRC | LMTPRC | TRADER 61D STOPPRC
381417 GOO0G BUY MKT 0 0 DAY BB 0 0 CGARVIN 0
381450 B BUY KT 0 250 DAY B8 189.79 0 COARVIN]
331491 oM BUY KT 200 200 DAY B8 18038 0 CGARVIN]
381492 iBM BUY MKT 0 DAY B8 0 CGARVIN o
381494 BM BUY MKT o 0 DAY BB 0 0 CGARVIN o
381495 BM BUY MKT 0 0 DAY BB 0 0 CGARVIN 0
381496 BM BUY MKT o 0 DAY BB o 0 CGARVIN o
(Lupdate orders | [cosa |

The order blotter displays the current order information for a trader.

Create the order request structure order to define the order parameters. This code
creates a buy market order for 330 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order .EMSX_TICKER = "IBM";

order .EMSX_AMOUNT = int32(330);
order .EMSX_ORDER_TYPE = “MKT";

order .EMSX_BROKER = "BB";

order .EMSX_TIF = "DAY";

order .EMSX_HAND_INSTRUCTION = "ANY";
order .EMSX_SIDE = "BUY";

Create and route the order using the Bloomberg EMSX connection ¢ and the order
request structure order. Use the custom event handler processEventToBlotter by
setting the name-value pair argument "useDefaultEventHandler® to false.

events = createOrderAndRoute(c,order, "useDefaul tEventHandler” ,false)

emsxOrderBlotter

events =

L1

CreateOrderAndRoute = {

EMSX_SEQUENCE = 381499

EMSX_ROUTE_ID = 1

MESSAGE = Order created and routed

}

createOrderAndRoute creates the order, routes the order, and returns a structure
events that contains an empty double. processEventToBlotter displays output
from createOrderAndRoute with the order number EMSX_ SEQUENCE, route number
EMSX_ROUTE_ID, and message: Order created and routed.

2a EMSX Order Blottes Eﬂg
File Edit View Insert Tools Desktop Window Help El
SEQUENCE TICKER SIDE TYPE WORKING FILLED TIF BROKER STATUS HANDLING AVGPRC LMTPRC TRADER GTD STOPPRC

381417 GO0G BUY MKT 1] [} DAY BB [} 1] CGARVIN [}

381490 BM BUY MKT 1] 250 DAY BB 189.79 0 CGARVIN [}

381491 BM BUY MKT 200 200 DAY BB 189.38 1] CGARVIN []

381492 BM BUY MKT 1] 0 DAY BB 0 0 CGARVIN 0

381484 BM BUY MKT o [} DAY BB 0 1] CGARVIN [}

381495 BM BUY MKT 1] [] DAY BB o 1] CGARVIN []

321495 BM BUY MKT 0 0 DAY BB 0 0 CGARVIN 0

381489 IBM US Equity BUY 1] [} DAY BB NEW ANY [} 0 CGARVIN 1] [}

The order blotter updates using the information for the created and routed order,
where order number EMSX SEQUENCE is 381499, using the event handler function
processEventToBlotter. The order blotter updates as orders are created and
managed.

Close the Bloomberg EMSX connection.
close(c)

. “Create and Manage a Bloomberg EMSX Order” on page 3-12
. “Create and Manage a Bloomberg EMSX Route” on page 3-16

4-91

4 Functions — Alphabetical List

. “Manage a Bloomberg EMSX Order and Route” on page 3-21

Input Arguments

¢ — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using emsx.

Output Arguments

t — MATLAB timer
object

MATLAB timer, returned as a MATLAB object. For details, see timer.

subs — Bloomberg EMSX subscription list
subscription list object

Bloomberg EMSX subscription list, returned as a Bloomberg EMSX subscription list
object.

More About
Tips

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.

. “Workflow for Bloomberg EMSX” on page 2-2

See Also

timer | close | createOrder | createOrder | createOrderAndRoute |
createOrderAndRouteWithStrat | deleteOrder | deleteRoute | emsx |
modifyOrder | orders | routeOrder | routes

Introduced in R2013a

4-92

processEvent

processEvent

Sample Bloomberg EMSX event handler

Syntax

processEvent(c)

Description

processEvent(c) displays and flushes the event queue associated with the Bloomberg
EMSX connection c. processEvent is a sample event handler function. You can build a
custom event handler function to process Bloomberg EMSX events.

Examples

Continually Process the Bloomberg EMSX Event Queue
Create the Bloomberg EMSX connection c.
c = emsx("//blp/emapisvc_beta®);

Use timer to continually process the Bloomberg EMSX event queue.

t = timer(“TimerFcn®,{@c.eventhandler}, “Period",1, ...
“ExecutionMode®, "fixedRate™)

t is the MATLAB timer object. For details, see timer.

Close the Bloomberg EMSX connection.
close(c)
Process the Bloomberg EMSX Event Queue Once
Create the Bloomberg EMSX connection c.

c = emsx("//blp/emapisvc_beta®);

Use the default event handler function processEvent to process the Bloomberg EMSX
event queue once.

4-93

4 Functions — Alphabetical List

processEvent(c)

SessionConnectionUp = {
server = "localhost/127.0.0.1:8194"
}
SessionStarted = {
}
ServiceOpened = {
serviceName = "//blp/emapisvc_beta"
}
processEvent clears the Bloomberg EMSX event queue.

Close the Bloomberg EMSX connection.
close(c)

. “Create and Manage a Bloomberg EMSX Order” on page 3-12
. “Create and Manage a Bloomberg EMSX Route” on page 3-16
. “Manage a Bloomberg EMSX Order and Route” on page 3-21

Input Arguments

¢ — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using emsx.

More About
Tips

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.

4-94

processEvent

. “Workflow for Bloomberg EMSX” on page 2-2

. “Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on
page 1-23

See Also

timer | close | createOrder | createOrderAndRoute |
createOrderAndRouteWithStrat | deleteOrder | deleteRoute | emsx |
modifyOrder | orders | routeOrder | routes

Introduced in R2013a

4-95

4 Functions — Alphabetical List

4-96

routeOrder

Route Bloomberg EMSX order

Syntax

events = routeOrder(c,route)
events = routeOrder(c,route, "timeOut”,timeout)

routeOrder(, "useDefaul tEventHandler* ,false)

= routeOrder(c,route,options)

Description

events = routeOrder(c,route) routes a Bloomberg EMSX order using the
Bloomberg EMSX connection ¢ and route request route. routeOrder returns a status
message using the default event handler.

events = routeOrder(c,route, "timeOut”,timeout) specifies a timeout value
timeout for the execution of the default event handler.

routeOrder(____ ,"useDefaultEventHandler” ,false) routes a Bloomberg EMSX
order using any of the input arguments in the previous syntaxes and a custom event
handler. Write a custom event handler to process the events associated with routing
orders. This syntax does not have an output argument because the custom event handler
processes the contents of the event queue. If you want to use the default event handler
instead, set the flag "useDefaultEventHandler" to true and use the events output
argument. By default, the flag "useDefaultEventHandler" is set to true.

= routeOrder(c, route,options) uses the options structure to customize
the output, which is useful to preconfigure and save your options for repeated use. The
available options structure fields are timeOut and useDefaultEventHandler. Use
the events output argument when the flag useDefaultEventHandler is set to true
and omit this output argument when useDefaul tEventHandler is set to False.

routeOrder

Examples

Route an Order Using the Default Event Handler

To route a Bloomberg EMSX order, create the connection c using emsx, set up the order
subscription using orders, and create the order using createOrder. For an example
showing these activities, see “Create and Manage a Bloomberg EMSX Order” on page
3-12. Set up the route subscription using routes.

Define the route request structure route. Convert the numbers to 32-bit signed integers
using INt32. This code specifies to route 100 shares of IBM to the broker BB using any
hand instruction and the order number 335877.

route.EMSX_SEQUENCE = int32(335877);

route.EMSX_TICKER = "IBM";
route.EMSX_AMOUNT = int32(100);
route.EMSX_BROKER = "BB~;

route.EMSX_HAND_INSTRUCTION = "ANY";

Route the order using the Bloomberg EMSX connection ¢ and route.

events = routeOrder(c,route)

events

EMSX_SEQUENCE: 335877
EMSX_ROUTE _ID: 1
MESSAGE: "Order Routed”

The default event handler processes the events associated with routing the order.
routeOrder returns events as a structure that contains these fields:

* Bloomberg EMSX order number

* Bloomberg EMSX route identifier

+ Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list

objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

4-97

4 Functions — Alphabetical List

4-98

Close the Bloomberg EMSX connection.
close(c)
Route an Order Using a Timeout

To route a Bloomberg EMSX order, create the connection c using emsx, set up the order
subscription using orders, and create the order using createOrder. For an example
showing these activities, see “Create and Manage a Bloomberg EMSX Order” on page
3-12. Set up the route subscription using routes.

Define the route request structure route. Convert the numbers to 32-bit signed integers
using Int32. This code specifies to route 100 shares of IBM to the broker BB using any
hand instruction and the order number 335877.

route.EMSX_SEQUENCE = int32(335877);

route.EMSX_TICKER = "IBM";
route .EMSX_AMOUNT = int32(100);
route.EMSX_BROKER = "BB";

route .EMSX_HAND_INSTRUCTION = “ANY";

Route the order using the Bloomberg EMSX connection ¢ and route. Set the timeout
value to 200 milliseconds.

events = routeOrder(c,route, "timeOut”,200)

events =

EMSX_SEQUENCE: 335877
EMSX_ROUTE_ID: 1
MESSAGE: "Order Routed"”

The default event handler processes the events associated with routing the order.
routeOrder returns events as a structure that contains these fields:

* Bloomberg EMSX order number

* Bloomberg EMSX route identifier

* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list

objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)

routeOrder

c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)
Route an Order Using a Custom Event Handler

To route a Bloomberg EMSX order, create the connection € using emsx, set up the order
subscription using orders, and create the order using createOrder. For an example
showing these activities, see “Create and Manage a Bloomberg EMSX Order” on page
3-12. Set up the route subscription using routes.

Define the route request structure route. Convert the numbers to 32-bit signed integers
using INt32. This code specifies to route 100 shares of IBM to the broker BB using any
hand instruction and the order number 335877.

route.EMSX_SEQUENCE = int32(335877);

route.EMSX_TICKER = "IBM";
route.EMSX_AMOUNT = int32(100);
route.EMSX_BROKER = "BB";

route .EMSX_HAND_INSTRUCTION = “ANY";

Suppose you create a custom event handler function called eventhandler with input
argument c. Run eventhandler using timer. Start the timer to run eventhandler
immediately using start. For details, see “Writing and Running Custom Event Handler
Functions with Bloomberg EMSX” on page 1-23.

t = timer("TimerFcn® ,{@c.eventhandler}, "Period",1, ...

"ExecutionMode”, " fixedRate"™)
start(t)

t is the MATLAB timer object. For details, see timer.

Route the order using the Bloomberg EMSX connection ¢ and route. Set the flag
"useDefaultEventHandler"™ to false so that eventhandler processes the events
associated with routing an order.

routeOrder(c,route, "useDefaultEventHandler®,false)

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs. Stop the timer to stop data updates using stop.

4-99

4 Functions — Alphabetical List

4-100

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)
stop(t)

Delete the timer if you are done processing data updates using delete.

delete(t)

Close the Bloomberg EMSX connection.

close(c)
Route an Order Using an Options Structure

To route a Bloomberg EMSX order, create the connection € using emsx, set up the order
subscription using orders, and create the order using createOrder. For an example
showing these activities, see “Create and Manage a Bloomberg EMSX Order” on page
3-12. Set up the route subscription using routes.

Define the route request structure route. Convert the numbers to 32-bit signed integers
using INt32. This code specifies to route 100 shares of IBM to the broker BB using any
hand instruction and the order number 335877.

route.EMSX_SEQUENCE = int32(335877);

route.EMSX_TICKER = "IBM";
route . EMSX_AMOUNT = int32(100);
route.EMSX_BROKER = "BB";

route .EMSX_HAND_INSTRUCTION = "ANY";

Create a structure options. To use the default event handler, set the field
useDefaul tEventHandler to true. Set the field timeOut to 200 milliseconds. Route
the order using the Bloomberg EMSX connection c, route, and options structure
options.

options.useDefaultEventHandler = true;
options.timeOut = 200;

events = routeOrder(c,route,options)

events

EMSX_SEQUENCE: 335877
EMSX_ROUTE_ID: 1
MESSAGE: "Order Routed"”

routeOrder

The default event handler processes the events associated with routing the order.
routeOrder returns events as a structure that contains these fields:

* Bloomberg EMSX order number
* Bloomberg EMSX route identifier
* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)

. “Create and Manage a Bloomberg EMSX Order” on page 3-12
. “Create and Manage a Bloomberg EMSX Route” on page 3-16
. “Manage a Bloomberg EMSX Order and Route” on page 3-21

Input Arguments

¢ — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using emsx.

route — Route request
structure

Route request, specified as a structure containing these fields.

Convert the numbers to 32-bit signed integers using int32. EMSX_SEQUENCE must
denote an existing order sequence number.

Field Description
EMSX_SEQUENCE Bloomberg EMSX order sequence number
EMSX_TICKER Bloomberg EMSX ticker symbol

4-101

4 Functions — Alphabetical List
P

4-102

Field Description

EMSX_AMOUNT Bloomberg EMSX number of shares
EMSX_BROKER Bloomberg EMSX broker name
EMSX_HAND_ INSTRUCTION Bloomberg EMSX hand instruction

Example: route .EMSX_SEQUENCE = int32(728918);
route.EMSX_TICKER = "XYZ";

route .EMSX_AMOUNT = int32(100);
route.EMSX_BROKER = "BB";
route.EMSX_HAND_INSTRUCTION = "ANY";

Data Types: struct

timeout — Timeout value
500 milliseconds (default) | nonnegative integer

Timeout value, specified as a nonnegative integer. This integer denotes the time in
milliseconds the event handler listens to the queue for an event for each iteration of the
code. The event handler can be a default or custom event handler.

Data Types: double

options — Options for custom event handler or timeout value
structure

Options for custom event handler or timeout value, specified as a structure. To reuse the
settings for specifying a custom event handler or timeout value for the event handler, use
the options structure.

Specify using a custom event handler and a timeout value of 500 milliseconds.

Example: options.useDefaultEventHandler = false;
options.timeOut = 500;

Data Types: struct

Output Arguments

events — Event queue contents
double | structure

routeOrder

Event queue contents, returned as a double or structure.

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

More About

Tips

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.

. “Workflow for Bloomberg EMSX” on page 2-2

. “Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on
page 1-23

See Also

timer | close | createOrder | createOrderAndRoute |
createOrderAndRouteWithStrat | delete | deleteOrder | deleteRoute | emsx
| modifyOrder | orders | routeOrderWithStrat | routes | start | stop

Introduced in R2013a

4-103

4 Functions — Alphabetical List

4-104

groupRouteOrderWithStrat

Route multiple Bloomberg EMSX orders with strategies

Syntax

events = groupRouteOrderWithStrat(c, route,strat)
events = groupRouteOrderWithStrat(c,route,strat, "timeOut”,timeout)

groupRouteOrderWithStrat(, "useDefaultEventHandler" ,false)

= groupRouteOrderWithStrat(c,route,strat,options)

Description

events = groupRouteOrderWithStrat(c, route,strat) routes multiple
Bloomberg EMSX orders with strategies using the Bloomberg EMSX connection c, route
request route, and strategy strat. routeOrderWithStrat returns the order sequence
number, route number, and status message using the default event handler.

events = groupRouteOrderWithStrat(c,route,strat, "timeOut”,timeout)
specifies a timeout value timeout for the execution of the default event handler.

groupRouteOrderWithStrat(___ , "useDefaultEventHandler®, false)

routes multiple Bloomberg EMSX orders with strategies using any of the input
arguments in the previous syntaxes and a custom event handler. To process the events
associated with routing orders, write a custom event handler. This syntax does not
have an output argument because the custom event handler processes the contents

of the event queue. If you want to use the default event handler instead, set the flag
"useDefaultEventHandler" to true and use the events output argument. By
default, the flag "useDefaultEventHandler” is set to true.

= groupRouteOrderWithStrat(c,route,strat,options) uses the
options structure to customize the output, which is useful to preconfigure and save
your options for repeated use. The available options structure fields are timeOut
and useDefaul tEventHandler. Use the events output argument when the flag
useDefaul tEventHandler is set to true and omit this output argument when
useDefaultEventHandler is set to false.

groupRouteOrderWithStrat

Examples

Route Orders Using the Default Event Handler

To route a Bloomberg EMSX order with strategies, create the connection ¢ using emsx,
set up the order subscription using orders, and create the order using createOrder.

For an example showing these activities, see “Create and Manage a Bloomberg EMSX

Order” on page 3-12. Set up the route subscription using routes.

Define the route request structure route. Convert the numbers to 32-bit signed integers
using Int32. This code specifies these route request fields:

* Order numbers 335877 and 335878

+ Stock symbol IBM

* 100 percent of shares shown on the order to be routed
* Broker BMTB

* Any hand instruction

* Time in force set to DAY

* Market order type

route.EMSX_SEQUENCE = {int32(335877);int32(335878)};
route.EMSX_TICKER = "I1BM";

route .EMSX_AMOUNT_PERCENT = int32(100);
route.EMSX_BROKER = "BMTB";
route.EMSX_HAND_INSTRUCTION = "ANY";

route.EMSX_TIF = "DAY";

route.EMSX_ORDER_TYPE = "MKT";

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using Int32.

strat.EMSX_STRATEGY _NAME = "SSP";
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 O 0]);
strat.EMSX_STRATEGY_FIELDS = {"09:30:00","14:30:00",50};

Route the orders using the Bloomberg EMSX connection ¢, route, and strat.

events = groupRouteOrderWithStrat(c,route,strat)

events

4-105

4 Functions — Alphabetical List
P

4-106

EMSX_SUCCESS_ROUTES: [1x1 struct]
EMSX_FAILED ROUTES: [1x1 struct]
MESSAGE: "1 of 1 Order(s) Routed*®

where
events.EMSX_ SUCCESS ROUTES =

EMSX_SEQUENCE: 335877
EMSX_ROUTE_ID: 1

and events.EMSX_FAILED ROUTES =

EMSX_SEQUENCE: 335878
ERROR_CODE: 0
ERROR_MESSAGE: {"Order 335878 View-only orders can not be routed®}

The default event handler processes the events associated with routing the order.
groupRouteOrderWithStrat returns events as a structure that contains these fields:

* Bloomberg EMSX success routing structure, which contains the order number and
route identifier for the orders that successfully routed

* Bloomberg EMSX failed routing structure, which contains the order number, error
code, and error message for the orders that failed to route

* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.
close(c)
Route Orders Using a Timeout

To route a Bloomberg EMSX order with strategies, create the connection C using emsx,
set up the order subscription using orders, and create the order using createOrder.

For an example showing these activities, see “Create and Manage a Bloomberg EMSX

Order” on page 3-12. Set up the route subscription using routes.

groupRouteOrderWithStrat

Define the route request structure route. Convert the numbers to 32-bit signed integers
using Int32. This code specifies these route request fields:

* Order numbers 335877 and 335878

+ Stock symbol IBM

* 100 percent of shares shown on the order to be routed
* Broker BMTB

* Any hand instruction

* Time in force set to DAY

* Market order type

route.EMSX_SEQUENCE = {int32(335877);int32(335878)};
route.EMSX_TICKER = "I1BM";

route.EMSX_AMOUNT_PERCENT = int32(100);
route.EMSX_BROKER = "BMTB";
route.EMSX_HAND_INSTRUCTION = “ANY";

route . EMSX_TIF = "DAY";

route.EMSX_ORDER_TYPE = "MKT";

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using Int32.

strat.EMSX_STRATEGY _NAME = "SSP";
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 O 0]);
strat.EMSX_STRATEGY_FIELDS = {"09:30:00","14:30:00",50};

Route the orders using the Bloomberg EMSX connection c, route, and strat. Set the
timeout value to 200 milliseconds.

events = groupRouteOrderWithStrat(c,route,strat, "timeOut”,200)

events
EMSX_SUCCESS_ROUTES: [1x1 struct]
EMSX_FAILED ROUTES: [1x1 struct]
MESSAGE: "1 of 1 Order(s) Routed*®
where

events.EMSX_ SUCCESS ROUTES =

EMSX_SEQUENCE: 335877

4-107

4 Functions — Alphabetical List

EMSX_ROUTE_ID: 1
and events.EMSX_FAILED ROUTES =

EMSX_SEQUENCE: 335878
ERROR_CODE: 0
ERROR_MESSAGE: {"Order 335878 View-only orders can not be routed®}

The default event handler processes the events associated with routing the order.
groupRouteOrderWithStrat returns events as a structure that contains these fields:

* Bloomberg EMSX success routing structure, which contains the order number and
route identifier for the orders that successfully routed

* Bloomberg EMSX failed routing structure, which contains the order number, error
code, and error message for the orders that failed to route

* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)
Route Orders Using a Custom Event Handler

To route a Bloomberg EMSX order with strategies, create the connection € using emsx,
set up the order subscription using orders, and create the order using createOrder.
For an example showing these activities, see “Create and Manage a Bloomberg EMSX

Order” on page 3-12. Set up the route subscription using routes.

Define the route request structure route. Convert the numbers to 32-bit signed integers
using Int32. This code specifies these route request fields:

* Order numbers 335877 and 335878
* Stock symbol IBM

+ 100 percent of shares shown on the order to be routed

4-108

groupRouteOrderWithStrat

* Broker BMTB
* Any hand instruction
+ Time in force set to DAY

* Market order type

route.EMSX_SEQUENCE = {int32(335877);int32(335878)};
route.EMSX_TICKER = "1BM";

route.EMSX_AMOUNT_PERCENT = int32(100);
route.EMSX_BROKER = *BMTB";
route.EMSX_HAND_INSTRUCTION = "ANY";

route.EMSX_TIF = "DAY";

route.EMSX_ORDER_TYPE = "NKT";

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using Int32.

strat.EMSX_STRATEGY NAME = "SSP";
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 O 0]);
strat.EMSX_STRATEGY FIELDS = {"09:30:00","14:30:00",50};

Suppose that you create a custom event handler function called eventhandler with
input argument c. Run eventhandler using timer. To run eventhandler immediately,
start the timer using start. For details, see “Writing and Running Custom Event
Handler Functions with Bloomberg EMSX” on page 1-23.

t = timer("TimerFcn®,{@c-eventhandler}, "Period”,1, ...
"ExecutionMode®, "fixedRate")
start(t)

t is the MATLAB timer object. For details, see timer.

Route the orders using the Bloomberg EMSX connection c, route, and strat. Set the
flag "useDefaultEventHandler" to false so that eventhandler processes the
events associated with routing an order.

groupRouteOrderWithStrat(c,route,strat, "useDefaul tEventHandler® ,false)

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs. To stop data updates, stop the timer using stop.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

4-109

4 Functions — Alphabetical List

stop(t)

If you are done processing data updates, delete the timer using delete.

delete(t)

Close the Bloomberg EMSX connection.

close(c)
Route Orders Using an Options Structure

To route a Bloomberg EMSX order with strategies, create the connection ¢ using emsx,
set up the order subscription using orders, and create the order using createOrder.

For an example showing these activities, see “Create and Manage a Bloomberg EMSX

Order” on page 3-12. Set up the route subscription using routes.

Define the route request structure route. Convert the numbers to 32-bit signed integers
using INt32. This code specifies these route request fields:

* Order numbers 335877 and 335878

* Stock symbol IBM

* 100 percent of shares shown on the order to be routed

* Broker BMTB

* Any hand instruction

* Time in force set to DAY

* Market order type

route_EMSX_SEQUENCE = {int32(335877);int32(335878)};
route.EMSX TICKER = "IBM";

route_EMSX_AMOUNT_PERCENT = int32(100);

route.EMSX BROKER = "BMTB";
route.EMSX _HAND_ INSTRUCTION = “ANY";

route . EMSX_TIF = "DAY";

route.EMSX _ORDER_TYPE = “MKT";

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using Int32.

strat.EMSX_STRATEGY NAME = "SSP";
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 O 0]);

4-110

groupRouteOrderWithStrat

strat.EMSX_STRATEGY_FIELDS = {"09:30:00%,"14:30:00",50};

Create a structure options. To use the default event handler, set the field
useDefaultEventHandler to true. Set the field timeOut to 200 milliseconds.
Route the orders using the Bloomberg EMSX connection c, route, strat, and options
structure options.

options.useDefaultEventHandler = true;
options.timeOut = 200;

events = groupRouteOrderWithStrat(c,route,strat,options)

events =

EMSX_SUCCESS_ROUTES: [1x1 struct]
EMSX_FAILED _ROUTES: [1x1 struct]
MESSAGE: "1 of 1 Order(s) Routed®

where
events.EMSX_ SUCCESS ROUTES =

EMSX_SEQUENCE: 335877
EMSX_ROUTE_ID: 1

and events.EMSX_ FAILED ROUTES =

EMSX_SEQUENCE: 335878
ERROR_CODE: 0
ERROR_MESSAGE: {"Order 335878 View-only orders can not be routed®}

The default event handler processes the events associated with routing the order.
groupRouteOrderWithStrat returns events as a structure that contains these fields:

* Bloomberg EMSX success routing structure, which contains the order number and
route identifier for the orders that successfully routed

* Bloomberg EMSX failed routing structure, which contains the order number, error
code, and error message for the orders that failed to route

* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

4-111

4 Functions — Alphabetical List

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.
close(c)

. “Create and Manage a Bloomberg EMSX Order” on page 3-12
. “Create and Manage a Bloomberg EMSX Route” on page 3-16
. “Manage a Bloomberg EMSX Order and Route” on page 3-21

Input Arguments

¢ — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using emsx.

route — Route request
structure

Route request, specified as a structure containing these fields.

Convert the numbers to 32-bit signed integers using int32. EMSX_SEQUENCE must
denote an existing order sequence number.

Field Description

EMSX_SEQUENCE Bloomberg EMSX order sequence number
EMSX_TICKER Bloomberg EMSX ticker symbol
EMSX_AMOUNT Bloomberg EMSX number of shares
EMSX_BROKER Bloomberg EMSX broker name
EMSX_HAND__INSTRUCTION Bloomberg EMSX hand instruction
EMSX_TIF Bloomberg EMSX time in force
EMSX_ORDER_TYPE Bloomberg EMSX order type

Example: route.EMSX_SEQUENCE = int32(728918);
route.EMSX TICKER = "XYZ";

4-112

groupRouteOrderWithStrat

route.EMSX AMOUNT = int32(100);
route.EMSX BROKER = "BB";
route.EMSX_HAND_INSTRUCTION = “ANY"*;
route.EMSX TIF = "DAY";
route.EMSX_ORDER_TYPE = *MKT*";

Data Types: struct

strat — Order strategies
structure

Order strategies, specified as a structure that contains the fields:
EMSX_STRATEGY_NAME, EMSX_STRATEGY_FIELD_INDICATORS, and
EMSX_STRATEGY_FIELDS. The structure field values must align with the strategy fields
specified by EMSX_STRATEGY_NAME. For details about strategy fields and ordering, see
getBrokerinfo.

Convert EMSX_STRATEGY_FIELD_INDICATORS to a 32-bit signed integer using int32.

Set EMSX_STRATEGY_FIELD_INDICATORS equal to O for each field to use the field data
setting in EMSX_FIELD_DATA. Or, set EMSX_STRATEGY_FIELD_INDICATORS equal to 1
to ignore the data in EMSX_FI1ELD_DATA.

Example: strat_EMSX_STRATEGY_NAME = "SSP";
strat_.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 O 0]):
strat_EMSX_STRATEGY_FIELDS = {"09:30:00","14:30:00",50};

Data Types: struct

timeout — Timeout value
500 milliseconds (default) | nonnegative integer

Timeout value, specified as a nonnegative integer. This integer denotes the time in
milliseconds the event handler listens to the queue for an event for each iteration of the
code. The event handler can be a default or custom event handler.

Data Types: double

options — Options for custom event handler or timeout value
structure

Options for custom event handler or timeout value, specified as a structure. To reuse the
settings for specifying a custom event handler or timeout value for the event handler, use
the options structure.

4-113

4 Functions — Alphabetical List

4-114

Specify using a custom event handler and a timeout value of 500 milliseconds.

Example: options.useDefaultEventHandler = false;
options.timeOut = 500;

Data Types: struct

Output Arguments

events — Event queue contents
double | structure

Event queue contents, returned as a double or structure.

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

More About

Tips

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.

. “Workflow for Bloomberg EMSX” on page 2-2

. “Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on
page 1-23

See Also

timer | close | createOrder | createOrderAndRoute |
createOrderAndRouteWithStrat | delete | deleteOrder | deleteRoute | emsx
| getBrokeriInfo | modifyOrder | orders | routeOrder | routeOrderWithStrat
| routes | start | stop

Introduced in R2015b

routeOrderWithStrat

routeOrderWithStrat

Route Bloomberg EMSX order with strategies

Syntax

events = routeOrderWithStrat(c, route,strat)
events routeOrderWithStrat(c,route,strat, "timeOut”,timeout)

routeOrderWithStrat(, "useDefaultEventHandler" ,false)

= routeOrderWithStrat(c,route,strat,options)

Description

events = routeOrderWithStrat(c,route,strat) routes a Bloomberg EMSX
order with strategies using the Bloomberg EMSX connection ¢, route request route,
and strategy strat. routeOrderWithStrat returns the order sequence number, route
number, and status message using the default event handler.

events = routeOrderWithStrat(c, route,strat, "timeOut”, timeout) specifies
a timeout value timeout for the execution of the default event handler.

routeOrderWithStrat(___ , "useDefaultEventHandler®,false) routes a
Bloomberg EMSX order with strategies using any of the input arguments in the
previous syntaxes and a custom event handler. Write a custom event handler to
process the events associated with routing orders. This syntax does not have an
output argument because the custom event handler processes the contents of the
event queue. If you want to use the default event handler instead, set the flag
"useDefaultEventHandler" to true and use the events output argument. By
default, the flag "useDefaultEventHandler" is set to true.

= routeOrderWithStrat(c,route,strat,options) uses the options
structure to customize the output, which is useful to preconfigure and save your
options for repeated use. The available options structure fields are timeOut
and useDefaul tEventHandler. Use the events output argument when the flag
useDefaul tEventHandler is set to true and omit this output argument when
useDefaultEventHandler is set to false.

4-115

4 Functions — Alphabetical List

4-116

Examples

Route an Order Using the Default Event Handler

To route a Bloomberg EMSX order with strategies, create the connection C using emsx,
set up the order subscription using orders, and create the order using createOrder.
For an example showing these activities, see “Create and Manage a Bloomberg EMSX

Order” on page 3-12. Set up the route subscription using routes.

Define the route request structure route. Convert the numbers to 32-bit signed integers
using Int32. This code specifies to route 100 shares of IBM to the broker BMTB using any
hand instruction and the order number 335877.

route.EMSX_SEQUENCE = int32(335877);

route EMSX_TICKER = "IBM";
route.EMSX_AMOUNT = int32(100);
route.EMSX_BROKER = "BMTB";

route.EMSX_HAND_INSTRUCTION = "ANY";

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using Int32.

strat.EMSX_STRATEGY _NAME = "SSP";
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 O 0]);
strat.EMSX_STRATEGY_FIELDS = {"09:30:00","14:30:00",50};

Route the order using the Bloomberg EMSX connection c, route, and strat.

events = routeOrderWithStrat(c,route,strat)
events =

EMSX_SEQUENCE: 335877
EMSX_ROUTE_ID: 1
MESSAGE: "Order Routed”

The default event handler processes the events associated with routing the order.
routeOrderWithStrat returns events as a structure that contains these fields:

* Bloomberg EMSX order number
* Bloomberg EMSX route identifier
* Bloomberg EMSX message

routeOrderWithStrat

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)
Route an Order Using a Timeout

To route a Bloomberg EMSX order with strategies, create the connection C using emsx,
set up the order subscription using orders, and create the order using createOrder.

For an example showing these activities, see “Create and Manage a Bloomberg EMSX

Order” on page 3-12. Set up the route subscription using routes.

Define the route request structure route. Convert the numbers to 32-bit signed integers
using Int32. This code specifies to route 100 shares of IBM to the broker BMTB using any
hand instruction and the order number 335877.

route.EMSX_SEQUENCE = int32(335877);

route.EMSX_TICKER = "IBM";
route.EMSX_AMOUNT = int32(100);
route.EMSX_BROKER = "BMTB";

route.EMSX_HAND_INSTRUCTION = "ANY";

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using int32.

strat.EMSX_STRATEGY_NAME = "SSP*;
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 O 01);
strat.EMSX_STRATEGY_FIELDS = {"09:30:007,"14:30:00",50};

Route the order using the Bloomberg EMSX connection C, route, and strat. Set the
timeout value to 200 milliseconds.

events = routeOrderWithStrat(c,route,strat, "timeOut”,200)

events =

EMSX_SEQUENCE: 335877
EMSX_ROUTE_ID: 1
MESSAGE: "Order Routed"”

4-117

4 Functions — Alphabetical List

The default event handler processes the events associated with routing the order.
routeOrderWithStrat returns events as a structure that contains these fields:

* Bloomberg EMSX order number

* Bloomberg EMSX route identifier

* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list

objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)
Route an Order Using a Custom Event Handler

To route a Bloomberg EMSX order with strategies, create the connection ¢ using emsx,
set up the order subscription using orders, and create the order using createOrder.

For an example showing these activities, see “Create and Manage a Bloomberg EMSX

Order” on page 3-12. Set up the route subscription using routes.

Define the route request structure route. Convert the numbers to 32-bit signed integers
using Int32. This code specifies to route 100 shares of IBM to the broker BMTB using any
hand instruction and the order number 335877.

route.EMSX_SEQUENCE = int32(335877);

route.EMSX_TICKER = "IBM";
route.EMSX_AMOUNT = int32(100);
route.EMSX_BROKER = "BMTB";

route .EMSX_HAND_INSTRUCTION = "ANY";

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using int32.

strat.EMSX_STRATEGY_NAME = "SSP*;
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 O 01);
strat.EMSX_STRATEGY_FIELDS = {"09:30:00%,"14:30:00",50};

Suppose you create a custom event handler function called eventhandler with input
argument c. Run eventhandler using timer. Start the timer to run eventhandler

4-118

routeOrderWithStrat

immediately using start. For details, see “Writing and Running Custom Event Handler
Functions with Bloomberg EMSX” on page 1-23.

t = timer("TimerFcn”®,{@c-eventhandler}, "Period”,1, ...
"ExecutionMode®, "fixedRate")
start(t)

t is the MATLAB timer object. For details, see timer.

Route the order using the Bloomberg EMSX connection C, route, and strat. Set the
flag "useDefaultEventHandler" to false so that eventhandler processes the
events associated with routing an order.

routeOrderWithStrat(c,route,strat, "useDefaul tEventHandler"” ,false)

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs. Stop the timer to stop data updates using stop.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)
stop(t)

Delete the timer if you are done processing data updates using delete.
delete(t)
Close the Bloomberg EMSX connection.

close(c)
Route an Order Using an Options Structure

To route a Bloomberg EMSX order with strategies, create the connection ¢ using emsx,
set up the order subscription using orders, and create the order using createOrder.
For an example showing these activities, see “Create and Manage a Bloomberg EMSX

Order” on page 3-12. Set up the route subscription using routes.

Define the route request structure route. Convert the numbers to 32-bit signed integers
using INt32. This code specifies to route 100 shares of IBM to the broker BMTB using any
hand instruction and the order number 335877.

route.EMSX_SEQUENCE = int32(335877);
route.EMSX_TICKER = "IBM";
route.EMSX_AMOUNT = int32(100);

4-119

4 Functions — Alphabetical List

route_EMSX_BROKER = "BMTB";
route .EMSX_HAND_INSTRUCTION = "ANY";

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using Int32.

strat.EMSX_STRATEGY_NAME = "SSP*;
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 O 01);
strat.EMSX_STRATEGY_FIELDS = {"09:30:007,"14:30:00",50};

Create a structure options. To use the default event handler, set the field
useDefaultEventHandler to true. Set the field timeOut to 200 milliseconds. Route
the order using the Bloomberg EMSX connection c, route, strat, and options structure
options.

options.useDefaultEventHandler = true;
options.timeOut = 200;

events = routeOrderWithStrat(c,route,strat,options)

events =

EMSX_SEQUENCE: 335877
EMSX_ROUTE_ID: 1
MESSAGE: "Order Routed"”

The default event handler processes the events associated with routing the order.
routeOrderWithStrat returns events as a structure that contains these fields:

+ Bloomberg EMSX order number
* Bloomberg EMSX route identifier
* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.
close(c)

. “Create and Manage a Bloomberg EMSX Order” on page 3-12

4-120

routeOrderWithStrat

. “Create and Manage a Bloomberg EMSX Route” on page 3-16
. “Manage a Bloomberg EMSX Order and Route” on page 3-21

Input Arguments

¢ — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using emsx.

route — Route request
structure

Route request, specified as a structure containing these fields.

Convert the numbers to 32-bit signed integers using int32. EMSX_SEQUENCE must
denote an existing order sequence number.

Field Description

EMSX_SEQUENCE Bloomberg EMSX order sequence number
EMSX_TICKER Bloomberg EMSX ticker symbol
EMSX_AMOUNT Bloomberg EMSX number of shares
EMSX_BROKER Bloomberg EMSX broker name
EMSX_HAND__INSTRUCTION Bloomberg EMSX hand instruction

Example: route.EMSX_SEQUENCE = 1nt32(728918);
route.EMSX_ TICKER "XYZ*;
route.EMSX_AMOUNT = int32(100);

route.EMSX BROKER = "BB";
route.EMSX HAND_ INSTRUCTION = “ANY";

Data Types: struct

strat — Order strategies
structure

Order strategies, specified as a structure that contains the fields:
EMSX_STRATEGY_NAME, EMSX_STRATEGY_FIELD_INDICATORS, and

4-121

4 Functions — Alphabetical List
P

4-122

EMSX_STRATEGY_FIELDS. The structure field values must align with the strategy fields
specified by EMSX_STRATEGY_NAME. For details about strategy fields and ordering, see
getBrokerInfo.

Convert EMSX_STRATEGY_FIELD_INDICATORS to a 32-bit signed integer using int32.

Set EMSX_STRATEGY_FIELD_INDICATORS equal to O for each field to use the field data
setting in EMSX_FIELD_DATA. Or, set EMSX_STRATEGY_FIELD_INDICATORS equal to 1
to ignore the data in EMSX_FI1ELD_DATA.

Example: strat_EMSX_STRATEGY_NAME = "SSP";
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 O 0]);
strat.EMSX_STRATEGY FIELDS = {"09:30:00","14:30:00",50};

Data Types: struct

timeout — Timeout value
500 milliseconds (default) | nonnegative integer

Timeout value, specified as a nonnegative integer. This integer denotes the time in
milliseconds the event handler listens to the queue for an event for each iteration of the
code. The event handler can be a default or custom event handler.

Data Types: double

options — Options for custom event handler or timeout value
structure

Options for custom event handler or timeout value, specified as a structure. To reuse the
settings for specifying a custom event handler or timeout value for the event handler, use
the options structure.

Specify using a custom event handler and a timeout value of 500 milliseconds.

Example: options.useDefaultEventHandler = false;
options.timeOut = 500;

Data Types: struct

Output Arguments

events — Event queue contents
double | structure

routeOrderWithStrat

Event queue contents, returned as a double or structure.

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

More About

Tips

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.

. “Workflow for Bloomberg EMSX” on page 2-2

. “Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on
page 1-23

See Also

timer | close | createOrder | createOrderAndRoute |
createOrderAndRouteWithStrat | delete | deleteOrder | deleteRoute | emsx
| getBrokerlInfo | modifyOrder | orders | routeOrder | routes | start | stop

Introduced in R2013a

4-123

4 Functions — Alphabetical List

4-124

routes

Obtain Bloomberg EMSX route subscription

Syntax
[events,subs] = routes(c,fields)
[events,subs] = routes(c,fields,Name,Value)

[events,subs] = routes(c,fields,options)

Description

[events, subs] routes(c, fields) subscribes to Bloomberg EMSX fields Fields
using the Bloomberg EMSX connection C. routes returns existing event data events
from the event queue and the Bloomberg EMSX subscription list subs.

[events,subs] = routes(c,fields,Name,Value) uses additional options specified
by one or more Name,Value pair arguments to specify a custom event handler or timeout
value for the event handler.

[events,subs] = routes(c,fields,options) uses the options structure to
customize the output, which is useful to preconfigure and save your options for repeated
use. The options structure fields and values correspond to names and values of name-
value pair arguments, respectively.

Examples

Set Up Route Subscription Using the Default Event Handler
Create the Bloomberg EMSX connection c.
c = emsx("//blp/emapisvc_beta®);

Set up the route subscription for Bloomberg EMSX fields EMSX_BROKER and
EMSX_WORKING using the Bloomberg EMSX connection cC.

routes

fields = {"EMSX_BROKER", "EMSX_WORKING"};

[events,subs] = routes(c,fields)

events =
MSG_TYPE: {5x1 cell}
MSG_SUB_TYPE: {5x1 cell}
EVENT_STATUS: [5x1 int32]
subs =

com.bloomberglp.blpapi.SubscriptionList@463b9287

events contains fields for the events currently in the event queue. subs contains the
Bloomberg EMSX subscription list object.

Unsubscribe from route events using the Bloomberg EMSX subscription list object subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.

close(c)
Set Up Route Subscription Using a Custom Event Handler

Create the Bloomberg EMSX connection c.
c = emsx("//blp/emapisvc_beta®);

Write a custom event handler function named eventhandler. Run the custom event
handler using timer. Start the timer to run eventhandler immediately using start.
For details, see “Writing and Running Custom Event Handler Functions with Bloomberg
EMSX” on page 1-23.

t = timer("TimerFcn®,{@c.eventhandler}, "Period",1, ...
"ExecutionMode®, "fixedRate™);
start(t)

t is the timer object.

Set up the route subscription for Bloomberg EMSX fields EMSX_BROKER and
EMSX_WORKING using the Bloomberg EMSX connection c. Use the custom event handler
by setting the name-value pair argument "useDefaultEventHandler” to false.

4-125

4 Functions — Alphabetical List

fields = {"EMSX_BROKER", "EMSX_WORKING"};
[events,subs] = routes(c, fields, "useDefaultEventHandler®,false)
events =
1
subs =
com.bloomberglp.blpapi.SubscriptionList@463b9287

events is an empty double. The custom event handler processes the event queue. subs
contains the Bloomberg EMSX subscription list object.

Unsubscribe from route events using the Bloomberg EMSX subscription list object subs.
Stop the timer to stop data updates using stop.

c.Session.unsubscribe(subs)
stop(t)

Delete the timer if you are done processing data updates using delete.
delete(t)
Close the Bloomberg EMSX connection.
close(c)
Set Up Route Subscription Using a Timeout
Create the Bloomberg EMSX connection c.
c = emsx("//blp/emapisvc_beta®);

Set up the route subscription for Bloomberg EMSX fields EMSX_BROKER and
EMSX_WORKING using the Bloomberg EMSX connection c. Specify the name-value pair
argument timeOut and set it to 200 milliseconds.

fields = {"EMSX_BROKER", "EMSX_WORKING"};

[events,subs] = routes(c,fields, "timeOut”,200)

events =

4-126

routes

MSG_TYPE: {5x1 cell}
MSG_SUB_TYPE: {5x1 cell}
EVENT_STATUS: [5x1 int32]
subs =

com_bloomberglp.-blpapi.SubscriptionList@463b9287

events contains fields for the events currently in the event queue. subs contains the
Bloomberg EMSX subscription list object.

Unsubscribe from route events using the Bloomberg EMSX subscription list object subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.

close(c)
Set Up Route Subscription Using an Options Structure

Create the Bloomberg EMSX connection c.
c = emsx("//blp/emapisvc_beta®);

Create a structure options. To use the default event handler, set the field

useDefaul tEventHandler to true. Set the field timeOut to 200 milliseconds. Set up
the route subscription for Bloomberg EMSX fields EMSX_BROKER and EMSX_WORKING
using the Bloomberg EMSX connection ¢ and options structure options.

options.useDefaultEventHandler = true;
options.timeOut = 200;
fields = {"EMSX_BROKER", "EMSX_WORKING"};
[events,subs] = routes(c,fields,options)
events =

MSG_TYPE: {5x1 cell}

MSG_SUB_TYPE: {5x1 cell}
EVENT_STATUS: [5x1 int32]

4-127

4 Functions — Alphabetical List

4-128

subs =
com_bloomberglp.blpapi.SubscriptionList@463b9287

events contains fields for the events currently in the event queue. subs contains the
Bloomberg EMSX subscription list object.

Unsubscribe from route events using the Bloomberg EMSX subscription list object subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.
close(c)

. “Create and Manage a Bloomberg EMSX Order” on page 3-12
. “Create and Manage a Bloomberg EMSX Route” on page 3-16
. “Manage a Bloomberg EMSX Order and Route” on page 3-21

Input Arguments

¢ — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using emsx.

fields — Bloomberg EMSX field information

cell array

Bloomberg EMSX field information, specified using a cell array. Use
getAlIFieldMetaData to view available field information for the Bloomberg EMSX
service.

Example: "EMSX_TICKER"
"EMSX_AMOUNT*
"EMSX_ORDER_TYPE*

Data Types: cell

options — Options for custom event handler or timeout value
structure

routes

Options for custom event handler or timeout value, specified as a structure. Use the
options structure instead of name-value pair arguments to reuse the optional name-value
pair arguments to specify a custom event handler or timeout value for the event handler.

The options structure field and values correspond to names and values of the name-
value pair arguments, respectively.

Specify using a custom event handler and a timeout value of 500 milliseconds.

Example: options.useDefaultEventHandler = false;
options.timeOut = 500;

Data Types: struct

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (* 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

Example: "useDefaultEventHandler* ,false

"useDefaultEventHandler™ — Flag for event handler preference
true (default) | false

Flag for event handler preference, indicating whether to use the default or custom event
handler to process order events, specified as the comma-separated pair consisting of
"useDefaultEventHandler™ and the logical values true or false.

To specify the default event handler, set this flag to true.
Otherwise, set this flag to False to specify a custom event handler.
Data Types: logical

"timeOut” — Timeout value for event handler
500 milliseconds (default) | nonnegative integer

Timeout value for event handler for the Bloomberg EMSX service, specified as the
comma-separated pair consisting of "timeOut” and a nonnegative integer in units of
milliseconds.

Example: "timeOut” ,200

4-129

4 Functions — Alphabetical List

4-130

Data Types: double

Output Arguments

events — Event queue contents
double | structure

Event queue contents, returned as a double or structure.

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

When the name-value pair argument "useDefaultEventHandler” or the same field
for the structure options is set to false, events is an empty double.

subs — Bloomberg EMSX subscription list
subscription list object

Bloomberg EMSX subscription list, returned as a Bloomberg EMSX subscription list
object.

More About
Tips

* For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using
the WAPI <GO> option from the Bloomberg terminal.

* Suppose you create a custom event handler function called eventhandler with input
argument c. Run eventhandler using this code.

t = timer("TimerFcn®,{@c.eventhandler}, "Period”,1, ...
"ExecutionMode”, "fixedRate")

t is the MATLAB timer object. For details, see timer.

. “Workflow for Bloomberg EMSX” on page 2-2

. “Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on
page 1-23

routes

See Also

timer | close | createOrder | createOrderAndRoute |
createOrderAndRouteWithStrat | delete | deleteOrder | deleteRoute | emsx
| getAllFieldMetaData | modifyOrder | modifyRoute | orders | routeOrder |
start | stop

Introduced in R2013a

4-131

4 Functions — Alphabetical List

xtrdr

Create X_TRADER connection

Syntax

X = xtrdr

Description

X = xtrdr starts X_TRADER or connects to an existing X_TRADER session.

Examples

Create a Connection to X_TRADER
X = xtrdr
X =

xtrdr with properties:

Gate: [1x1 COM.Xtapi_TTGate 1]
InstrNotify: []
Instrument: []
OrderSet: []
“Create an Order Using X_TRADER” on page 1-16
“Listen for X_TRADER Price Updates” on page 3-2
“Listen for X_TRADER Price Market Depth Updates” on page 3-4

“Submit X_TRADER Orders” on page 3-8

Output Arguments

X — X_TRADER connection

connection object

4-132

xtrdr

X_TRADER connection, returned as a connection object for an X_TRADER session.

Limitations

You should only create one X_TRADER connection per MATLAB session. To create a
new X_TRADER connection, start a new MATLAB session.

More About

“Workflows for Trading Technologies X_TRADER” on page 2-4
X_TRADER API

See Also

close

Introduced in R2013a

4-133

https://developer.tradingtechnologies.com/x_trader-api

4 Functions — Alphabetical List

close

Close X_TRADER connection

Syntax

close(X)

Description

close(X) closes the X_TRADER connection X.

Examples

Close X_TRADER Connection
close(X)

“Create an Order Using X_TRADER” on page 1-16

“Listen for X_TRADER Price Updates” on page 3-2

“Listen for X_TRADER Price Market Depth Updates” on page 3-4
“Submit X_TRADER Orders” on page 3-8

Input Arguments

X — X_TRADER connection

connection object

X_TRADER connection, specified as a connection object created using xtrdr.

More About

“Workflows for Trading Technologies X_TRADER” on page 2-4

4-134

close

X_TRADER API

See Also

xtrdr

Introduced in R2013a

4-135

https://developer.tradingtechnologies.com/x_trader-api

4 Functions — Alphabetical List

4-136

createlnstrument

Create instrument for X_TRADER

Syntax

createlnstrument(c,s)
createlnstrument(c,Name,Value)

Description

createlnstrument(c,s) creates the X_TRADER instrument defined by the structure
s with fields corresponding to valid X_TRADER API options. For details, see the
Trading Technologies X_TRADER API Programming Tutorial or X_TRADER API Class
Reference.

createlnstrument(c,Name,Value) creates the instrument using one or more
Name,Value pair arguments with names and values corresponding to valid X_TRADER
API options. For details, see the Trading Technologies X_TRADER API Programming
Tutorial or X_TRADER API Class Reference.

Examples

Create an X_TRADER Instrument Using an Input Structure

The instruments used in these examples continually expire. To ensure you use a current
instrument, see the Market Explorer in X_TRADER Pro.

Create the X_TRADER connection.
c = xtrdr;

Define an input structure s with fields corresponding to valid X_TRADER API options.
For example, create the input structure for Euro-Bobl Futures.

s = [1;
s.Exchange = "Eurex”;
s.Product = "0GBM";

https://www.tradingtechnologies.com/xtapi
https://www.tradingtechnologies.com/xtapi
https://www.tradingtechnologies.com/xtapi
https://www.tradingtechnologies.com/xtapi

createlnstrument

s.ProdType = "Option~;
s.Contract = "Janl2 P12300°;
s.Alias = "Testlnstrument3”;
S

S =

Exchange: “Eurex”
Product: "OGBM*®
ProdType: "Option*
Contract: "Janl2 P12300*
Alias: "Testlnstrument3*®

Requirement: Restart the MATLAB session before reusing an "Alias” setting.

Create an X_TRADER instrument.
createlnstrument(c,s)

Close the connection.

close(c)

Create an X_TRADER Instrument Using Name-Value Pairs
Create the X_TRADER connection.

c = xtrdr;

Create an X_TRADER instrument for Euro-Bobl Futures using name-value pair
arguments corresponding to valid X_TRADER API options.

createlnstrument(c, "Exchange”, "Eurex”, "Product”, "0OGBM", . . .
"ProdType*®, "Option~”, "Contract”, "Janl2 P12300", ...
"Alias”, "TestInstrument3*)

Close the connection.

close(c)

Retrieve Data Using Multiple X_TRADER Instruments

Create the X_TRADER connection.

4-137

4 Functions — Alphabetical List
P

4-138

c = xtrdr;

Create an X_TRADER instrument for Euro-Bobl Futures using name-value pair
arguments corresponding to valid X_TRADER API options.

createlnstrument(c, "Exchange®, "Eurex”, "Product”, "OGBM", . . .
"ProdType®, "Option®, "Contract”, "Junl4 P127%,.._.
"Alias”, "PricelnstrumentEurex®)

Create another X_TRADER instrument for CAISO NP15 EZ Gen Hub 5 MW Peak
Calendar-Day Real-Time LMP Futures using name-value pair arguments corresponding
to valid X_TRADER API options. This contract expires in April 2014.

createlnstrument(c, "Exchange®, "CME", "Product®, "2F", ...
"ProdType*, "Future”, “"Contract”, "Aprl4=, ...
"Alias”, "PricelnstrumentCMEAprl4-)

Create another X_TRADER instrument for CAISO NP15 EZ Gen Hub 5 MW Peak
Calendar-Day Real-Time LMP Futures using name-value pair arguments corresponding
to valid X_TRADER API options. This contract expires in October 2014.

createlnstrument(c, "Exchange®, "CME", "Product®,"2F", ...

"ProdType”, "Future”, "Contract”,"0Octl4", ...
*Alias”, "PricelnstrumentCMEOct14%)

Retrieve the exchange and product identifier for all three X_TRADER instruments.

d = getData(c,{"Exchange”, "Product®})

d =
Exchange: {3x1 cell}
Product: {3x1 cell}

d is a structure containing the Exchange and Product fields. The fields are cell arrays.

Display the Exchange field.
d.Exchange

ans =
"Eurex”
"CME*
"CME*

createlnstrument

The Exchange field contains the exchange names Eurex and CME for the three
X_TRADER instruments.

Close the connection.
close(c)

. “Create an Order Using X_TRADER” on page 1-16

. “Listen for X_TRADER Price Updates” on page 3-2

. “Listen for X_TRADER Price Market Depth Updates” on page 3-4
. “Submit X_TRADER Orders” on page 3-8

Input Arguments

c — X_TRADER connection

connection object
X_TRADER connection, specified as a connection object created using xtrdr.

s — X_TRADER input structure

structure

X_TRADER input structure, specified using fields corresponding to valid X_TRADER
API options. For details, see the Trading Technologies X_TRADER API Programming
Tutorial or X_TRADER API Class Reference.

Caution: If the symbols for the exchange are entered incorrectly or the exchange server is
down, an error appears. For example, if the exchange is “CME” and the CME exchange
server is down, then this error appears: The price server for the Exchange CME is down.
Unable to create instrument.

Example: s = [1;

s.Exchange = "Eurex"”;
-.Product = "0OGBM*";
-ProdType = "Option~;
.Contract = "Janl12 P12300°;
.Alilas = "Testlnstrument3~;

n unonon

4-139

https://www.tradingtechnologies.com/xtapi
https://www.tradingtechnologies.com/xtapi

4 Functions — Alphabetical List

Data Types: struct

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (" 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

Example:
createlnstrument(X, "Exchange”, "Eurex”, "Product”, "0OGBM" , "ProdType", "Option”, "Cc
P12300°, "Alias", "Testinstrument3®)

"Propertyl” — Valid X_TRADER API options

string

Valid X_TRADER API options, specified using information in the Trading Technologies
X_TRADER API Programming Tutorial or X_TRADER API Class Reference.

Requirements:

* When using the "Alias”™ name-value pair argument, ensure that every "Alias”
name is unique across all X_TRADER instruments.

* Restart the MATLAB session before reusing an "Alias”™ name.

Otherwise, createlnstrument returns an error.

Data Types: char

"Property2" — Valid X_TRADER API options

string

Valid X_TRADER API options, specified using information in the Trading Technologies
X_TRADER API Programming Tutorial or X_TRADER API Class Reference.

Data Types: char

More About

. “Workflows for Trading Technologies X_TRADER” on page 2-4

4-140

https://www.tradingtechnologies.com/xtapi
https://www.tradingtechnologies.com/xtapi
https://www.tradingtechnologies.com/xtapi
https://www.tradingtechnologies.com/xtapi

createlnstrument

. X_TRADER API

See Also

createNotifier | createOrderProfile | createOrderSet | xtrdr

Introduced in R2013a

4-141

https://developer.tradingtechnologies.com/x_trader-api

4 Functions — Alphabetical List

4-142

createNotifier

Create instrument notifier for X TRADER

Syntax

createNotifier(X,S)
createNotifier(X,Name,Value)

Description

createNotifier(X,S) creates the xtrdr instrument notifier defined by the structure
S with fields corresponding to valid X_TRADER API options. For details, see the
Trading Technologies X TRADER API Programming Tutorial or X_TRADER API Class
Reference.

createNotifier(X,Name,Value) creates the instrument notifier using X_ TRADER
API options specified by one or more Name,Value pair arguments with names and
values corresponding to valid X_TRADER API options. For details, see the Trading
Technologies X TRADER API Programming Tutorial or X TRADER API Class
Reference.

Examples

Create an X_TRADER Instrument Notifier Using an Input Structure

Start X_TRADER.
X = xtrdr;

Define an input structure, S, with fields corresponding to valid X_TRADER API options.

S =1;

S.Instrument = [];
S.UpdateFilter = °~;
S.EnablePriceUpdates = -1;

createNofifier

S.EnableDepthUpdates = O;
S.DebugLoglLevel = 3;
S.EnableOrderSetUpdates = -1;
S.PricelList = [];
S.DeliverAllPriceUpdates = 0O;
S

S =

Instrument: []
UpdateFilter: °*
EnablePriceUpdates: -1
EnableDepthUpdates: O
DebugLogLevel: 3
EnableOrderSetUpdates: -1
PriceList: []
DeliverAllPriceUpdates: 0O

Create an xtrdr instrument notifier.

createNotifier(X,S)

Close the connection.

close(X)

Create an X_TRADER Instrument Notifier Using Name-Value Pairs
Start X_ TRADER.

X = xtrdr;

Create an xtrdr instrument using name-value pairs corresponding to valid X_TRADER
API options.

createNotifier(X, " Instrument®,[], "UpdateFilter®," ", ..
"EnablePriceUpdates®,-1, "EnableDepthUpdates”,0, - ..
"DebuglLogLevel*® ,3, "EnableOrderSetUpdates” ,-1, ...
"PricelList",[], "DeliverAllPriceUpdates”,0)

Close the connection.
close(X)

. “Listen for X_TRADER Price Updates” on page 3-2

4-143

4 Functions — Alphabetical List
P

. “Listen for X_TRADER Price Market Depth Updates” on page 3-4
. “Submit X_TRADER Orders” on page 3-8

Input Arguments

X — X_TRADER connection

connection object
X_TRADER connection, specified as a connection object created using xtrdr.

S — xtrdr input structure with fields
structure

Xtrdr input structure, specified with fields corresponding to valid X_TRADER API
options. For details, see the Trading Technologies X TRADER API Programming
Tutorial or X_TRADER API Class Reference.

Example: S = [];

S.Exchange = "Eurex”;
S._.Product = "0GBM";
S.ProdType = “Option~;
S.Contract = "Janl2 P12300°;
S_Alias = "Testlnstrument3-;

Data Types: struct

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (* 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

Example: createNotifier(X, " Instrument”,
[1. UpdateFilter®,"", "EnablePriceUpdates”,-1, "EnableDepthUpdates”,0, "DebuglLogL
[1."DeliverAllPriceUpdates®,0)

"Propertyl” — Valid X_TRADER API options

string

4-144

createNofifier

Valid X_TRADER API options, specified using the details described in Trading
Technologies X TRADER API Programming Tutorial or X TRADER API Class
Reference.

Example: createNotifier(X, "Instrument”,
[1. UpdateFilter®," ", "EnablePriceUpdates”,-1, "EnableDepthUpdates*®
[1.DeliverAllPriceUpdates®,0)

Data Types: char

"Property2" — Valid X_TRADER API options

string

Valid X_TRADER API options, specified using the details described in Trading
Technologies X TRADER API Programming Tutorial or X TRADER API Class
Reference.

Example: createNotifier(X, "Instrument”,
[1, UpdateFilter®," ", "EnablePriceUpdates”,-1, "EnableDepthUpdates*”
[1.“DeliverAllPriceUpdates®,b0)

Data Types: char

More About

“Workflows for Trading Technologies X_TRADER” on page 2-4
X_TRADER API

See Also

createlnstrument | createOrderProfile | createOrderSet | xtrdr

Introduced in R2013a

,0, "DebuglLoglL

,0, "DebuglLoglL

4-145

https://developer.tradingtechnologies.com/x_trader-api

4 Functions — Alphabetical List

4-146

createOrderProfile

Create order profile for X_TRADER

Syntax
P = createOrderProfile(X,S)
P = createOrderProfile(X,Name,Value)

Description

P = createOrderProfile(X,S) creates an order profile defined by the structure

S with fields corresponding to valid X_TRADER API options. For details, see the
Trading Technologies X TRADER API Programming Tutorial or X_TRADER API Class
Reference.

P = createOrderProfile(X,Name,Value) creates an order profile using X_TRADER
API options specified by one or more Name,Value pair arguments with names and
values corresponding to valid X_TRADER API options. For details, see the Trading
Technologies X TRADER API Programming Tutorial or X TRADER API Class
Reference.

Examples

Create an Order Profile Using an Input Structure
Start X_TRADER.
X = xtrdr;

Define an input structure, S, with fields corresponding to valid X_TRADER API options.

S =10:

S.Instrument = [];
S_.Customer = °°;
S.Alias = "";
S.ReadProperties = "b";
S_WriteProperties = "b";

createOrderProfile

S.Customers = {"<Default>"};
S_.RoundOption = 2;
S.CustomerDefaults = [];

S

S =

Instrument: []

Customer: **

Alias:
ReadProperties: "b*
WriteProperties: "b*

Customers: {"<Default>"}

RoundOption: 2

CustomerDefaults: []

Create an order profile.
P = createOrderProfile(X,S);
Close the connection.

close(X)
Create an Order Profile Using Name-Value Pairs

Start X_TRADER.
X = xtrdr;

Create an order profile using name-value pairs corresponding to valid X_TRADER API

options.

createOrderProfile(X, " Instrument®,[], "Customer®,"", ...
"Alias","","ReadProperties”®,"b",...
"WriteProperties®,"b", "Customers”,{"<Default>"}, ...
"RoundOption®,2, "CustomerDefaults”,[])

Close the connection.
close(X)

. “Create an Order Using X_TRADER” on page 1-16
. “Listen for X_TRADER Price Updates” on page 3-2
. “Listen for X_TRADER Price Market Depth Updates” on page 3-4

4-147

4 Functions — Alphabetical List
P

. “Submit X_TRADER Orders” on page 3-8

Input Arguments

X — X_TRADER connection

connection object
X_TRADER connection, specified as a connection object created using xtrdr.

S — xtrdr input structure with fields
structure

xtrdr input structure, specified with fields corresponding to valid X_TRADER API
options. For details, see the Trading Technologies X TRADER API Programming
Tutorial or X_ TRADER API Class Reference.

Example: S = [];

S_Exchange = "Eurex"”;
S.Product = "0OGBM";
S.ProdType = “Option-;
S.Contract = "Janl2 P12300°;
S.Alias = "Testlnstrument3-;

Data Types: struct

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (*). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

Example: createOrderProfile(X, " Instrument”,
[1, "Customer*®, "<Default>","Alias”","", "RoundOption®,2, "CustomerDefaults")
"Propertyl” — Valid X_TRADER API options

string

Valid X_TRADER API options, specified using the details described in Trading
Technologies X TRADER API Programming Tutorial or X TRADER API Class
Reference.

4-148

createOrderProfile

Example: createOrderProfile(X, " Instrument”,
[1, "Customer*®, "<Default>","Alias","", "RoundOption®,2, "CustomerDefaults®)

Data Types: char

"Property2" — Valid X_TRADER API options

string

Valid X_TRADER API options, specified using the details described in Trading
Technologies X TRADER API Programming Tutorial or X TRADER API Class
Reference.

Example: createOrderProfile(X, " Instrument”,
[1, "Customer*®, "<Default>","Alias","", "RoundOption®,2, "CustomerDefaults")

Data Types: char

Output Arguments

P — Order profile

structure

Order profile, returned as a structure.

More About

“Workflows for Trading Technologies X_TRADER” on page 2-4
X_TRADER API

See Also
createlnstrument | createNotifier | createOrderSet | xtrdr

Introduced in R2013a

4-149

https://developer.tradingtechnologies.com/x_trader-api

4 Functions — Alphabetical List

4-150

createOrderSet

Create order set for X TRADER

Syntax

createOrderSet(X)
createOrderSet(X,S)
createOrderSet(X,Name,Value)

Description

createOrderSet(X) creates an Xtrdr order set with empty properties. You can

set the properties individually using X_TRADER API options. For details, see the
Trading Technologies X TRADER API Programming Tutorial or X_TRADER API Class
Reference.

createOrderSet(X,S) creates an xtrdr order set defined by the structure S
with fields corresponding to X_TRADER API options. For details, see the Trading
Technologies X TRADER API Programming Tutorial or X TRADER API Class
Reference.

createOrderSet(X,Name,Value) creates an order set using X_TRADER API
options specified by one or more Name, Value pair arguments with names and values
corresponding to X_TRADER API options. For details, see the Trading Technologies
X _TRADER API Programming Tutorial or X_TRADER API Class Reference.

Examples

Create an Empty Order Set
Start X_TRADER.
X = xtrdr;

Create an order set without any properties.

createOrderSet

createOrderSet(X)

Close the connection.

close(X)
Create an Order Set Using an Input Structure

Start X_TRADER.
X = xtrdr;

Define an input structure, S, with fields corresponding to X_TRADER API options.

= [1;
.Count = O;
_Alias = "7;
-ReadProperties = "b";
WriteProperties = "b";
-EnableOrderSetUpdates
.EnableOrderFillData =
.EnableOrderSend = 0;
.EnableOrderAutoDelete = O;
-QuotingOrderProfile = [];

-DebugLogLevel = 3;

-QuoteWithCancelReplace = 0;
-EnableOrderUpdateData = O;
-EnableFillCaching = 0O;

-AvgOpenPriceMode = “NONE®;
-EnableOrderRejectData = O;
-OrderStatusNotifyMode = “ORD_NOTIFY_NONE";

ol
|
[AEY

NDUOLOLLOLOLOLOOLOOOOLOOLnnnnn

Create an order set.

createOrderSet(X,S)

Close the connection.

close(X)

Create an Order Set Using Name-Value Pair Arguments

Start X_TRADER.

X = xtrdr;

4-151

4 Functions — Alphabetical List
P

Create an order set using name-value pair arguments corresponding to X_TRADER API
options.

createOrderSet(X, "Count”,0, "Alias"," ", "ReadProperties”™,"b", ...
"WriteProperties™,"b", "EnableOrderSetUpdates”,-1,...
"EnableOrderFillData",0, "EnableOrderSend”,0, . . .
"EnableOrderAutoDelete”,0, "QuotingOrderProfile”,[1,---
"DebuglLoglLevel, 3, "QuoteWithCancelReplace”,0, . . .
"EnableOrderUpdateData”,0, "EnableFillCaching”,0, ...
"AvgOpenPriceMode”, "NONE", "EnableOrderRejectData”,0, - . .
"OrderStatusNotifyMode™, "ORD_NOTIFY_NONE™)

Close the connection.
close(X)

. “Create an Order Using X_TRADER” on page 1-16

. “Listen for X_TRADER Price Updates” on page 3-2

. “Listen for X_TRADER Price Market Depth Updates” on page 3-4
. “Submit X_TRADER Orders” on page 3-8

Input Arguments

X — X_TRADER connection

connection object
X_TRADER connection, specified as a connection object created using xtrdr.

S — X_TRADER API properties

structure

X_TRADER API properties, specified as a structure where the field names match the
X_TRADER API properties. For details, see the Trading Technologies X TRADER API
Programming Tutorial or X_TRADER API Class Reference.

Example: S = [];

S._.Exchange = "Eurex”;
S.Product = "0GBM";
S.ProdType = "Option~;
S.Contract = "Janl2 P12300"°;
S_Alias = "Testlnstrument3-;

Data Types: struct

4-152

createOrderSet

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (* 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

Example:
createOrderSet(X, "Count®,0, *Alias", " ", "ReadProperties”, "b", "WriteProperties”,
[1°DebugLogLevel, 3, "QuoteWithCancelReplace”,0, "EnableOrderUpdateData”,0, "Enabl

"Propertyl® — X_TRADER API options

string

X_TRADER API options, specified using the details described in Trading Technologies
X_TRADER API Programming Tutorial or X_TRADER API Class Reference.

Data Types: char

"Property2" — X_TRADER API options

string

X_TRADER API options, specified using the details described in Trading Technologies
X_TRADER API Programming Tutorial or X_TRADER API Class Reference.

Data Types: char

More About

. “Workflows for Trading Technologies X_TRADER” on page 2-4
. X_TRADER API

See Also

createlnstrument | createNotifier | createOrderProfile | xtrdr

Introduced in R2013a

4-153

https://developer.tradingtechnologies.com/x_trader-api

4 Functions — Alphabetical List

4-154

getData

Obtain current X_TRADER data

Syntax

D
D

getData(X,S,F)
getData(X,F)

Description

D = getData(X,S,F) returns data for the fields F for the xtrdr instrument object,

S, with fields corresponding to valid X_TRADER API options. For details, see the
Trading Technologies X TRADER API Programming Tutorial or X_TRADER API Class
Reference.

D = getData(X,F) returns data for the fields F for all instruments associated with the
Xtrdr session object, X.

Examples

Return Exchange and Last Price for an Instrument

Return the exchange and last price fields for the instrument defined in
X. Instrument(l).

D

getData(X,X. Instrument(l),{"Exchange”,"Last"});
D =

Exchange: {"CME"}
Last: {"45%}

Return Exchange and Last Price for an Alias

Return the exchange and last price fields for the instrument defined by the alias
Pricelnstrumentl.

getData

lw)
1l

getData(X, "Pricelnstrumentl” ,{"Exchange”, "Last"});

Exchange: {"CME"}
Last: {"45"}

Return Exchange and Last Price for All Session Instruments

Return the exchange and last price fields for all instruments associated with the xtrdr
session object, X.

D

getData(X,{"Exchange”,"Last"});
D =

Exchange: {2x1 cell}
Last: {2x1 cell}

. “Listen for X_TRADER Price Updates” on page 3-2
. “Listen for X_TRADER Price Market Depth Updates” on page 3-4
. “Submit X_TRADER Orders” on page 3-8

Input Arguments

X — X_TRADER connection

connection object
X_TRADER connection, specified as a connection object created using xtrdr.

S — Instrument object
instrument

Instrument object created by createlnstrument or aliases with fields corresponding to
valid X_TRADER API options. For details, see the Trading Technologies X TRADER API
Programming Tutorial or X_ TRADER API Class Reference.

Example: x. Instrument(1)

F — Fields for the instrument object
string | cell array of strings

4-155

4 Functions — Alphabetical List

Fields for the instrument object or aliases, S. F without a corresponding S are fields for
all instruments associated with the Xtrdr session object, X.

Example: {"Exchange™, “"Last"}

Data Types: char | cell

Output Arguments

D — X_TRADER data

strings

X_TRADER data, returned as strings in MATLAB and missing data is returned as NaN.

More About

. “Workflows for Trading Technologies X_TRADER” on page 2-4
. X_TRADER API

See Also

createlnstrument | xtrdr

Introduced in R2013a

4-156

https://developer.tradingtechnologies.com/x_trader-api

cq9

cqg

Create CQG connection object

Syntax

c = cqg

Description

Cc = cqg creates a CQG connection object c.

Examples

Create the CQG Connection Object
Create the CQG connection object using cqg.

C = Cqg
c =
cqg with properties:

Handle: [1x1 COM.CQG_CQGCEL_4]
APIConfig: [1x1 Interface.CQG_4.0_Type_Library_-_Revised_API_1CQGAPIConfig]

CQG connection object properties reflect the CQG ActiveX object Handle and the API
configuration type library specification APIConfig.

Display the Hand le property of c.
c.Handle
ans =

COM.CQG_CQGCEL_4

Close the CQG connection.

4-157

4 Functions — Alphabetical List

4-158

close(c)

“Create an Order Using CQG” on page 1-11
“Create CQG Orders” on page 3-45

“Request CQG Historical Data” on page 3-50
“Request CQG Intraday Tick Data” on page 3-53
“Request CQG Real-Time Data” on page 3-57

Output Arguments

¢ — CQG connection
connection object

CQG connection, returned as a CQG connection object. The properties of this object are
as follows:

Property Description
Handle CQG ActiveX object
API1Config API configuration type library specification

These properties are determined by the CQG API.

More About

“Workflow for CQG” on page 2-8
CQG API Reference Guide

See Also

close | startUp

Introduced in R2013b

http://partners.cqg.com/api-resources/technical-documentation

close

close

Close CQG connection

Syntax

close(c)

Description

close(c) closes CQG connection C.

Examples

Close the CQG Connection

Create the CQG connection object C using cqg.
Cc = cq9;

Create the CQG connection using startup.
startUp(c)

Close the connection using the CQG connection object C.

close(c)

“Create an Order Using CQG” on page 1-11
“Create CQG Orders” on page 3-45

“Request CQG Historical Data” on page 3-50
“Request CQG Intraday Tick Data” on page 3-53
“Request CQG Real-Time Data” on page 3-57

Input Arguments

¢ — CQG connection
connection object

4-159

4 Functions — Alphabetical List

CQG connection, specified as a CQG connection object created using cqg.

More About

“Workflow for CQG” on page 2-8
CQG API Reference Guide

See Also

cqg | shutDown

Introduced in R2013b

4-160

http://partners.cqg.com/api-resources/technical-documentation

createOrder

createOrder

Create CQG order

Syntax

0 = createOrder(c,s,1,account,quantity)

0 = createOrder(c,s,2,account,quantity, limitprice)

0 = createOrder(c,s,3,account,quantity,stopprice)

0 = createOrder(c,s,4,account,quantity, limitprice,stopprice)
Description

0 = createOrder(c,s,1l,account,quantity) creates a CQGOrder object o for
a market order of quantity shares of CQG instrument s using the CQGAccount
credentials object account over the CQG connection C.

0 = createOrder(c,s,2,account,quantity, limitprice) creates a limit order
using a CQG limit price limitprice.

0 = createOrder(c,s,3,account,quantity,stopprice) creates a stop order
using a CQG stop price stopprice.

0 = createOrder(c,s,4,account,quantity, limitprice,stopprice) creates a
stop limit order using CQG limit and stop prices, limitprice and stopprice.

Examples

Create and Place a Market Order Using a CQGInstrument Obiject

To create and place a market order for shares of an instrument with the CQG Trader
Com API using a CQGInstrument object to specify the instrument, create the connection
C using cqg and startUp. Register an event handler for tracking events associated

with the connection status. Set up the API configuration properties. Then, register event
handlers for tracking events associated with the instrument subscription, order and

4-161

4 Functions — Alphabetical List

4-162

account. Subscribe to the instrument and create the CQGInstrument object cqglnst.
Then, set up the account credentials accountHandle. For an example demonstrating
these activities, see “Create CQG Orders” on page 3-45. See CQG API Reference Guide
to learn more about event handlers, API configuration properties, and CQGInstrument
object.

Create a market order that buys one share of the subscribed security cqglnst using the
account credentials accountHandle.

quantity = 1;

oMarket = createOrder(c,cqglnst,1l,accountHandle,quantity);
oMarket.Place

ans =
OrderChanged

The CQGOrder object oMarket contains the order. The CQG API executes the market
order using the CQG API function Place. After execution, the order status changes.

Close the CQG connection.

shutDown(c)
Create and Place a Market Order Using a CQG Instrument String

To create and place a market order for shares of an instrument with the CQG Trader
Com API using a string to specify the instrument, create the connection ¢ using cqg

and startUp. Register an event handler for tracking events associated with connection
status. Set up the API configuration properties. Then, register event handlers for
tracking events associated with instrument subscription, order and account. Subscribe to
the instrument. Then, set up the account credentials accountHandle. For an example
demonstrating these activities, see “Create CQG Orders” on page 3-45. See CQG API
Reference Guide to learn more about the event handlers and the API configuration
properties.

Create a market order that buys one share of the previously subscribed security "EZC*®
using the defined account credentials accountHandle.

cqglinstrumentName = "EZC";
quantity = 1;

oMarket = createOrder(c,cqglnstrumentName,1l,accountHandle, ...

createOrder

quantity);
oMarket.Place

ans =
OrderChanged

The CQGOrder object oMarket contains the order. The CQG API executes the market
order using the CQG API function Place. After execution, the order status changes.

Close the CQG connection.

shutDown(c)
Create and Place a Limit Order

To create and place a limit order for shares of an instrument with the CQG Trader Com
API using a CQGInstrument object to specify the instrument, create the connection

C using cqg and startUp. Register an event handler for tracking events associated
with connection status. Set up the API configuration properties. Then, register event
handlers for tracking events associated with instrument subscription, order and account.
Subscribe to the instrument and create the CQGInstrument object cqglnst. Then,

set up the account credentials accountHandle. For an example demonstrating these
activities, see “Create CQG Orders” on page 3-45. See CQG API Reference Guide

to learn more about the event handlers, the API configuration properties, and the
CQGInstrument object.

To create a limit order, you can use the bid price. Extract the CQG bid object qtBid from
the previously defined CQGInstrument object cqglnst.

qtBid = cqglnst._get("Bid");

Create a limit order that buys one share of the previously subscribed security cqglnst
using the previously defined account credentials accountHandle and qtBid for the
limit price.

quantity = 1;

limitprice qtBid.get("Price”);

oLimit = createOrder(c,cqglnst,2,accountHandle,quantity, ...
limitprice);
oLimit.Place

ans =

4-163

4 Functions — Alphabetical List

4-164

OrderChanged

The CQGOrder object oLimit contains the order. The CQG API executes the limit order
using the CQG API function Place. After execution, the order status changes.

Close the CQG connection.

shutbDown(c)
Create and Place a Stop Order

To create and place a stop order for shares of an instrument with the CQG Trader Com
API using a CQGInstrument object to specify the instrument, create the connection

C using cqg and startUp. Register an event handler for tracking events associated
with connection status. Set up the API configuration properties. Then, register event
handlers for tracking events associated with instrument subscription, order and account.
Subscribe to the instrument and create the CQGInstrument object cqglnst. Then,

set up the account credentials accountHandle. For an example demonstrating these
activities, see “Create CQG Orders” on page 3-45. See CQG API Reference Guide

to learn more about the event handlers, the API configuration properties, and the
CQGInstrument object.

To create a stop order, you can use the trade price. Extract the CQG trade object
qtTrade from the previously defined CQGlnstrument object cqglnst.

qtTrade = cqglnst.get("Trade®);

Create a stop order that buys one share of the previously subscribed security cqglnst
using the previously defined account credentials accountHandle and qtTrade for the
stop price.

quantity = 1;
stopprice = qtTrade.get("Price”);

oStop = createOrder(c,cqglnst,3,accountHandle,quantity, ...
stopprice);
oStop.-Place

ans =
OrderChanged

The CQGOrder object 0Stop contains the order. The CQG API executes the stop order
using the CQG API function Place. After execution, the order status changes.

createOrder

Close the CQG connection.

shutDown(c)
Create and Place a Stop Limit Order

To create and place a stop limit order for shares of an instrument with the CQG Trader
Com API using a CQGInstrument object to specify the instrument, create the connection
C using cqg and startUp. Register an event handler for tracking events associated

with connection status. Set up the API configuration properties. Then, register event
handlers for tracking events associated with instrument subscription, order and account.
Subscribe to the instrument and create the CQGInstrument object cqglnst. Then,

set up the account credentials accountHandle. For an example demonstrating these
activities, see “Create CQG Orders” on page 3-45. See CQG API Reference Guide

to learn more about the event handlers, the API configuration properties, and the
CQGInstrument object.

To create a stop limit order, you can use the bid and trade prices. Extract the CQG
bid object qtBid and the CQG trade object qtTrade from the previously defined
CQGInstrument object cqglnst.

gtBid = cqglnst.get("Bid");
gtTrade = cqglnst.get("Trade");

Create a stop limit order that buys one share of the subscribed security cqglnst using
the defined account credentials accountHandle and qtBid for the limit price and
gtTrade for the stop price.

quantity = 1;

limitprice = qtBid.get("Price");

stopprice = qtTrade.get("Price”);

oStopLimit = createOrder(c,cqglnst,4,accountHandle,quantity, ...
limitprice,stopprice);

oStopLimit_Place

ans =
OrderChanged

The CQGOrder object oStopLimit contains the order. The CQG API executes the stop
limit order using the CQG API function Place. After execution, the order status changes.

Close the CQG connection.

4-165

4 Functions — Alphabetical List

4-166

shutDown(c)

. “Create an Order Using CQG” on page 1-11

. “Create CQG Orders” on page 3-45

. “Request CQG Historical Data” on page 3-50

. “Request CQG Intraday Tick Data” on page 3-53
. “Request CQG Real-Time Data” on page 3-57

Input Arguments

¢ — CQG connection
connection object

CQG connection, specified as a CQG connection object created using cqg.

s — CQG instrument name
string | CQGInstrument object

CQG instrument name, specified as a string or a CQGInstrument object, denoting the
instrument or security for the order transaction. For more information about creating a
CQGInstrument object, see CQG API Reference Guide.

Data Types: char

account — CQG account credentials
CQGAccount object

CQG account credentials, specified as a CQGAccount object. This object encapsulates

all data pertinent to your account. For more information about creating a CQGAccount
object, see CQG API Reference Guide.

quantity — CQG order quantity

scalar

CQG order quantity, specified as a scalar denoting the number of shares to order. A
positive number denotes a buy and a negative number denotes a sell.
Data Types: double

limitprice — CQG limit price
double

createOrder

CQG limit price, specified as a double denoting the limit order price.

Data Types: double

stopprice — CQG stop price
double

CQG stop price, specified as a double denoting the stop order price.
Data Types: double

Output Arguments

o — CQG order
CQGOrder object

CQG order, returned as a CQGOrder object. This object encapsulates all data necessary

to execute a CQG order. For more information about creating a CQGOrder object, see
CQG API Reference Guide.

More About

“Workflow for CQG” on page 2-8
CQG API Reference Guide

See Also

cqg | history | realtime | timeseries

Introduced in R2013b

4-167

http://partners.cqg.com/api-resources/technical-documentation

4 Functions — Alphabetical List

4-168

history

Request CQG historical data

Syntax

history(c,s,startdate,enddate,period)
history(c,s,startdate,enddate,period,Xx)

Description

history(c,s,startdate,enddate,period) requests CQG historical data
asynchronously with bar size period between startdate and enddate for CQG
instrument name s with CQG connection cC.

history(c,s,startdate,enddate,period,x) requests CQG historical data
asynchronously with additional request properties X.

Examples

Request CQG Historical Data

To request daily historical data for an instrument, create the connection ¢ using cqg
and startUp. Register an event handler for tracking events associated with connection
status. Set up the API configuration properties. Then, register an event handler for
tracking events associated with building and initializing the output data structure. For
an example demonstrating these activities, see “Request CQG Historical Data” on page
3-50. See CQG API Reference Guide to learn more about event handlers and the API
configuration properties.

Request historical daily data for instrument XYZ.XYZ for the last 10 days.

instrument = "XYZ_XYZ";
startdate = floor(now) - 10;
enddate = floor(now);

period = “hpDaily”;

history(c, instrument,startdate,enddate,period)

history

MATLAB writes variable cqgHistoryData to the Workspace browser.

Display cqgHistoryData.

cqgHistoryData

cqgHistoryData =
1.0e+05 *
7.3533 0.0063 0.0063
7.3533 0.0064 0.0064
7.3533 0.0065 0.0065
7.3534 0.0065 0.0065
7.3534 0.0066 0.0066
7.3534 0.0065 0.0065
7.3534 0.0066 0.0066
7.3534 0.0066 0.0066
7.3534 0.0064 0.0064

Each row in cqgHistoryData represents data for 1 day. The columns in
cqgHistoryData show the numerical representation of the timestamp, the close price,
and the open price for the instrument during the day.

Close the CQG connection.

close(c)
Request CQG Historical Data with Additional Request Properties

To request daily historical data for an instrument with an additional property, create

the connection ¢ using cqg and startUp. Register an event handler for tracking events
associated with connection status. Set up the API configuration properties. Then, register
an event handler for tracking events associated with building and initializing the output
data structure. For an example demonstrating these activities, see “Request CQG
Historical Data” on page 3-50. See CQG API Reference Guide to learn more about event
handlers and the API configuration properties.

Pass an additional optional request property by creating the structure X and setting the
optional property.

X.UpdatesEnabled = false;
For additional optional properties you can set, see CQG API Reference Guide.

Request historical daily data for instrument XYZ.XYZ for the last 10 days using the
additional optional request property X.

4-169

4 Functions — Alphabetical List
P

4-170

instrument = "XYZ_XYZ";

startdate = floor(now) - 10;

enddate = floor(now);

period = “hpDaily”;

history(c, instrument,startdate,enddate,period,Xx)

MATLAB writes the variable cqgHistoryData to the Workspace browser.

Display cqgHistoryData.

cqgHistoryData

cqgHistoryData =
1.0e+05 *
7.3533 0.0063 0.0063
7.3533 0.0064 0.0064
7.3533 0.0065 0.0065
7.3534 0.0065 0.0065
7.3534 0.0066 0.0066
7.3534 0.0065 0.0065
7.3534 0.0066 0.0066
7.3534 0.0066 0.0066
7.3534 0.0064 0.0064

Each row in cqgHistoryData represents data for 1 day. The columns in
cqgHistoryData show the numerical representation of the timestamp, the close price,
and the open price for the instrument during the day.

Close the CQG connection.
close(c)

. “Create CQG Orders” on page 3-45

. “Request CQG Historical Data” on page 3-50

. “Request CQG Intraday Tick Data” on page 3-53
. “Request CQG Real-Time Data” on page 3-57

Input Arguments

¢ — CQG connection
connection object

history

CQG connection, specified as a CQG connection object created using cqg.

s — CQG instrument name
string
CQG instrument name, specified as a string identifying the instrument or security.

Data Types: char

startdate — Start date
date string | date scalar

Start date, specified as a starting date string or scalar.

Data Types: double | char

enddate — End date
date string | date scalar
End date, specified as an ending date string or scalar.

Data Types: double | char

period — Bar size
"hpDaily” (default) | "hpWeekly® | "hpMonthly® | "hpQuarterly” |
"hpSemiannual® | "hpYearly"®

Bar size, specified as one of the above enumerated strings predetermined by the CQG
API that denotes the length of time to collect data.

x — CQG request properties
request properties structure

CQG request properties, specified as a CQG request properties structure. Create this
structure by writing MATLAB code to set additional optional request properties. For
additional optional properties you can set, see CQG API Reference Guide.

Example: x .UpdatesEnabled = false;
Data Types: struct

More About

. “Workflow for CQG” on page 2-8

4-171

4 Functions — Alphabetical List

CQG API Reference Guide

See Also

cqg | createOrder | realtime | timeseries

Introduced in R2013b

4-172

http://partners.cqg.com/api-resources/technical-documentation

realtime

realtime

Subscribe to CQG instrument

Syntax

realtime(c,s)

Description

realtime(c, s) subscribes to a CQG instrument s using CQG connection c.

Examples

Subscribe to the CQG Instrument

To subscribe to the CQG instrument and get current data, create the connection C

using cqg and startUp. Register an event handler for tracking events associated with
connection status. Set up the API configuration properties. Then, register an event
handler for tracking events associated with instrument subscription. For an example
demonstrating these activities, see “Request CQG Real-Time Data” on page 3-57. See
CQG API Reference Guide to learn more about event handlers and the API configuration
properties.

With the connection established, subscribe to the instrument. The instrument name must
be formatted in the CQG long symbol view. For example, to subscribe to a security tied to
corn, type the following.

instrument = "F.US_EZC";
realtime(c, instrument)

MATLAB writes the structure variable cqgDataEZC to the Workspace browser.

Display cqgDataEZC.

cqgbataEzC(1,1)

4-173

4 Fynctions — Alphabetical List

ans =
Price: {15x1 cell}
Volume: {15x1 cell}
ServerTimestamp: {15x1 cell}
Timestamp: {15x1 cell}
Type: {15x1 cell}
Name: {15x1 cell}
Isvalid: {15x1 cell}
Instrument: {15x1 cell}
HasVolume: {15x1 cell}

cqgDataEZC returns the current quotes for the security.

Display data in the Price property of cqgDataEZC.
cqgbataEZC(1,1).Price

ans

|
NN DN

.1475e+09]
.1475e+09]
.1475e+09]

660.5000]

b

.1475e+09]
.1475e+09]
.1475e+09]
.1475e+09]
.1475e+09]
.1475e+09]
.1475e+09]

660.5000]
.1475e+09]

| | | |
NNNNNNDN

nlanlreboelonlonlonlonbonlon fon Lanlonlonlon

|
N

Close the CQG connection.
close(c)

. “Create an Order Using CQG” on page 1-11

. “Create CQG Orders” on page 3-45

. “Request CQG Historical Data” on page 3-50

. “Request CQG Intraday Tick Data” on page 3-53
. “Request CQG Real-Time Data” on page 3-57

4-174

realtime

Input Arguments

¢ — CQG connection
connection object

CQG connection, specified as a CQG connection object created using cqg.

s — CQG instrument name
string

CQG instrument name, specified as a string identifying the instrument or security.

Data Types: char

More About

. “Workflow for CQG” on page 2-8
. CQG API Reference Guide

See Also
cqg | createOrder | history | timeseries

Introduced in R2013b

4-175

http://partners.cqg.com/api-resources/technical-documentation

4 Functions — Alphabetical List

4-176

shutDown

Close CQG connection

Syntax

shutDown(c)

Description

shutDown(c) closes the CQG connection c.

Examples

Close the CQG Connection

Create the CQG connection object using cqg.

Cc = cq9;

Create the CQG connection using startup.
startUp(c)

Close the CQG connection.

shutbDown(c)

Alternatively, close the CQG connection using close.
close(c)

“Create CQG Orders” on page 3-45

“Request CQG Historical Data” on page 3-50
“Request CQG Intraday Tick Data” on page 3-53
“Request CQG Real-Time Data” on page 3-57

shutDown

Input Arguments

¢ — CQG connection
connection object

CQG connection, specified as a CQG connection object created using cqg.

More About

“Workflow for CQG” on page 2-8
CQG API Reference Guide

See Also

close | cqg | startUp

Introduced in R2013b

4-177

http://partners.cqg.com/api-resources/technical-documentation

4 Functions — Alphabetical List

4-178

startUp

Create CQG connection

Syntax

startUp(c)

Description

startUp(c) creates the CQG connection c.

Examples

Create the CQG Connection

Create the CQG connection object using cqg.
c = cq9;

Create the CQG connection.

startUp(c)

Close the CQG connection.

close(c)

“Create an Order Using CQG” on page 1-11
“Create CQG Orders” on page 3-45

“Request CQG Historical Data” on page 3-50
“Request CQG Intraday Tick Data” on page 3-53
“Request CQG Real-Time Data” on page 3-57

Input Arguments

¢ — CQG connection
connection object

startUp

CQG connection, specified as a CQG connection object created using cqg.

More About

“Workflow for CQG” on page 2-8
CQG API Reference Guide

See Also

close | cqg | shutDown

Introduced in R2013b

4-179

http://partners.cqg.com/api-resources/technical-documentation

4 Functions — Alphabetical List

4-180

timeseries

Request CQG intraday tick data

Syntax

timeseries(c,s,startdate,enddate)
timeseries(c,s,startdate,enddate, [],x)

timeseries(c,s,startdate,enddate, intraday)
timeseries(c,s,startdate,enddate, intraday,x)

Description

timeseries(c,s,startdate,enddate) requests CQG raw intraday tick data
asynchronously between startdate and enddate for CQG instrument name s with
CQG connection C.

timeseries(c,s,startdate,enddate, [],Xx) requests CQG raw intraday tick data
asynchronously without timed bar data using additional request properties X.

timeseries(c,s,startdate,enddate, intraday) requests CQG timed bar data
asynchronously with the aggregated bar value intraday.

timeseries(c,s,startdate,enddate, intraday, x) requests CQG timed bar data
asynchronously with additional request properties X.

Examples

Request CQG Intraday Tick Data

To request intraday tick data for an instrument, create the connection c using cqg and
startUp. Register an event handler for tracking events associated with connection
status. Set up the API configuration properties. Then, register an event handler for
tracking events associated with building and initializing the output data structure. For
an example demonstrating these activities, see “Request CQG Intraday Tick Data” on
page 3-53. See CQG API Reference Guide to learn more about event handlers and the API
configuration properties.

timeseries

Request intraday tick data for instrument XYZ.XYZ for the last 2 days.

instrument = "XYZ_XYZ";
startdate = now - 2;
enddate = now;

timeseries(c, instrument,startdate,enddate)

MATLAB writes the structure variable cqgTickData to the Workspace browser.
Display cqgTickData.

cqgTickData

cqgTickData =
Timestamp: {2x1 cell}
Price: [2x1 double]
Volume: [2x1 double]
PriceType: {2x1 cell}
CorrectionType: {2x1 cell}
SalesConditionLabel: {2x1 cell}
SalesConditionCode: [2x1 double]
Contributorld: {2x1 cell}
ContributorldCode: [2x1 double]
MarketState: {2x1 cell}

cqgTickData returns intraday tick data for the specified instrument.
Display the data in the Timestamp property of cqgTickData.

cqgTickData.Timestamp

ans =
"4/17/2013 2:14:00 PM*
"4/18/2013 2:14:00 PM*

Close the CQG connection.
close(c)
Request CQG Intraday Tick Data with Additional Properties

To request intraday tick data for an instrument with an additional property, create the
connection € using cqg and startUp. Register an event handler for tracking events
associated with connection status. Set up the API configuration properties. Then, register
an event handler for tracking events associated with building and initializing the output

4-181

4 Functions — Alphabetical List
P

data structure. For an example demonstrating these activities, see “Request CQG
Intraday Tick Data” on page 3-53. See CQG API Reference Guide to learn more about
event handlers and the API configuration properties.

Pass an additional optional request property by creating the structure X, and setting the
optional property. To see only bid tick data, for example, set TickFilter to "tfBid".

X.TickFilter = "tfBid";

TickFilter and SessionsFilter are the only valid additional optional properties for

calling timeseries without a timed bar request. For additional property values you can
set, see CQG API Reference Guide.

Request intraday tick data for instrument XYZ.XYZ for the last 2 days using the
additional optional request property X.

instrument = "XYZ_XYZ";
startdate = now - 2;
enddate = now;

timeseries(c, instrument,startdate,enddate, [],X)
MATLAB writes the variable cqgTickData to the Workspace browser.
Display cqgTickData.

cqgTickData

cqgTickData =
Timestamp: {2x1 cell}
Price: [2x1 double]
Volume: [2x1 double]
PriceType: {2x1 cell}
CorrectionType: {2x1 cell}
SalesConditionLabel: {2x1 cell}
SalesConditionCode: [2x1 double]
Contributorld: {2x1 cell}
ContributorldCode: [2x1 double]
MarketState: {2x1 cell}

cqgTickData returns intraday tick data for the specified instrument.

Display the data in the Timestamp property of cqgTickData.

cqgTickData.Timestamp

4-182

timeseries

ans =
"4/17/2013 2:14:00 PM*
"4/18/2013 2:14:00 PM*

Close the CQG connection.

close(c)
Request CQG Timed Bar Data

To request timed bar data for an instrument, create the connection ¢ using cqg and
startUp. Register an event handler for tracking events associated with connection
status. Set up the API configuration properties. Then, register an event handler for
tracking events associated with building and initializing the output data structure. For
an example demonstrating these activities, see “Request CQG Intraday Tick Data” on
page 3-53. See CQG API Reference Guide to learn more about event handlers and the API
configuration properties.

Request timed bar data for instrument XYZ . XYZ for the last fraction of a day.

instrument = "XYZ_XYZ";
startdate = now - .1;
enddate = now;

intraday = 1;

timeseries(c, instrument,startdate,enddate, intraday)
MATLAB writes variable cqgTimedBarData to the Workspace browser.

Display cqgTimedBarData.

cqgTimedBarData

cqggTimedBarData =
1.0e+09 *
0.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
0.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
0.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
0.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
0.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475

cqgTimedBarData returns timed bar data for the specified instrument. The columns of
cqgTimedBarData display data corresponding to the timestamp, open price, high price,
low price, close price, mid-price, HL.C3, average price, and tick volume.

Close the CQG connection.

4-183

4 Functions — Alphabetical List

4-184

close(c)
Request CQG Timed Bar Data with Additional Properties

To request timed bar data for an instrument with an additional property, create the
connection € using cqg and startUp. Register an event handler for tracking events
associated with connection status. Set up the API configuration properties. Then, register
an event handler for tracking events associated with building and initializing the output
data structure. For an example demonstrating these activities, see “Request CQG
Intraday Tick Data” on page 3-53. See CQG API Reference Guide to learn more about
event handlers and the API configuration properties.

Pass an additional optional request property by creating the structure X, and setting the
optional property.

X.UpdatesEnabled = false;
For additional optional properties you can set, see CQG API Reference Guide.

Request timed bar data for instrument XYZ.XYZ for the last fraction of a day using the
additional optional request property X.

instrument = "XYZ_XYZ";
startdate = now - .1;
enddate = now;

intraday = 1;

timeseries(c, instrument,startdate,enddate, intraday,Xx)
MATLAB writes the variable cqgTimedBarData to the Workspace browser.

Display cqgTimedBarData.

cqgTimedBarData

cqgTimedBarData =
1.0e+09 *
.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475

+ OO0OO0OO0OOo

cqgTimedBarData returns timed bar data for the specified instrument. The columns of
cqgTimedBarData display data corresponding to the timestamp, open price, high price,
low price, close price, mid-price, HLC3, average price, and tick volume.

timeseries

Close the CQG connection.
close(c)

. “Create CQG Orders” on page 3-45

. “Request CQG Historical Data” on page 3-50

. “Request CQG Intraday Tick Data” on page 3-53
. “Request CQG Real-Time Data” on page 3-57

Input Arguments

¢ — CQG connection
connection object

CQG connection, specified as a CQG connection object created using cqg.

s — CQG instrument name
string

CQG instrument name, specified as a string identifying the instrument or security.
Data Types: char

startdate — Start date
date string | date scalar

Start date, specified as a starting date string or scalar.
Data Types: double | char

enddate — End date
date string | date scalar

End date, specified as an ending date string or scalar.

Data Types: double | char

intraday — Aggregated bar value
scalar | []

Aggregated bar value, specified as a scalar from 1.0 to 1440.0. If you want to call
timeseries to return intraday tick data with additional properties without timed bar
data, then enter [] for this argument.

4-185

4 Functions — Alphabetical List

Data Types: double

x — CQG request properties
request properties structure

CQG request properties, specified as a CQG request properties structure. Create this
structure by writing MATLAB code to set additional optional request properties. For
additional optional properties you can set, see CQG API Reference Guide.

Example: x.UpdatesEnabled = false;
Data Types: struct

More About

. “Workflow for CQG” on page 2-8
. CQG API Reference Guide

See Also

cqg | createOrder | history | realtime

Introduced in R2013b

4-186

http://partners.cqg.com/api-resources/technical-documentation

ibtws

ibtws

Create IB Trader Workstation connection

Syntax

ib = ibtws(host,port)

Description

ib = ibtws(host,port) creates a connection to IB Trader Workstation on a machine
with IP address host and port number port. ibtws returns the IB Trader Workstation
connection object ib.

Examples

Connect to the IB Trader Workstation on the Local Machine

Connect to the IB Trader Workstation on the local machine using port number 7496.
ib = ibtws("",7496)
ib =

ibtws with properties:

Clientld: O
Handle: [1x1 COM.TWS_TwsCtrl_1]
Host: **
Port: 7496

MATLAB returns ib as the connection to the IB Trader Workstation with the Interactive
Brokers ActiveX object, the local host, and the port number that you choose.

Display the Hand le property of ib.
ib.Handle

ans =

4-187

4 Functions — Alphabetical List
P

4-188

COM.TWS TwsCtrl_1

Close the IB Trader Workstation connection.
close(ib)

Connect to the IB Trader Workstation on Another Machine

Note: The IP address for this example does not represent a real Interactive Brokers
machine.

Use IP address 1111.222.333.44 and port number 7496 to connect to the IB Trader
Workstation on another machine.

ib = iTbtws("1111.222.333.44",7496)
ib =
ibtws with properties:

Clientld: O
Handle: [1x1 COM.TWS_ TwsCtrl_1]
Host: "1111.222.333.44*
Port: 7496

MATLAB returns ib as the connection to the IB Trader Workstation with the Interactive
Brokers ActiveX object, the IP address that you choose, and the port number that you
choose.

Display the Handle property of ib.
ib_Handle
ans =

COM.TWS_TwsCtril_1
Close the IB Trader Workstation connection.
close(ib)

. “Create an Order Using IB Trader Workstation” on page 1-7

ibtws

. “Create Interactive Brokers Combination Order” on page 3-39
. “Create and Manage an Interactive Brokers Order” on page 3-26
. “Request Interactive Brokers Historical Data” on page 3-32

. “Request Interactive Brokers Real-Time Data” on page 3-35

Input Arguments
host — IP address of machine where IB Trader Workstation is running

" " | string for IP address

IP address of the machine where the IB Trader Workstation is running, specified as
either an empty string to specify the local machine or an IP address string to specify
another machine.

Data Types: char

port — IB Trader Workstation port number
scalar

IB Trader Workstation port number, specified as a number designating the connection
port of the machine.

Data Types: double

Output Arguments

ib — IB Trader Workstation connection
connection object

IB Trader Workstation connection, returned as an IB Trader Workstation connection
object. The properties of this object are as follows.

Property Description

Clientid Application identifier where the connection originated
Handle Interactive Brokers ActiveX object

Host host argument

Port port argument

4-189

4 Functions — Alphabetical List

4-190

The Interactive Brokers API determines these properties.

More About

Tips

* 1bBui ItInErrMsg appears in the MATLAB workspace. Check the status of
connection and function execution by displaying the contents of this variable.
ibBui ItInErrMsg contains messages related to:
+ Connection
+ Information resulting from executing functions

Errors

. “Workflow for Interactive Brokers” on page 2-6

. Interactive Brokers API Reference Guide

See Also

close

Introduced in R2013b

http://www.interactivebrokers.com/en/software/api/api.htm

close

close

Close IB Trader Workstation connection

Syntax

close(ib)

Description

close(ib) closes the IB Trader Workstation connection ib.

Examples

Close the IB Trader Workstation Connection

Connect to the IB Trader Workstation on the local machine with port number 7496.
ib = ibtws("",7496);

ibtws creates the IB Trader Workstation connection object ib.

Close the IB Trader Workstation connection using the IB Trader Workstation connection
object ib.

close(ib)

. “Create an Order Using IB Trader Workstation” on page 1-7

. “Create Interactive Brokers Combination Order” on page 3-39

. “Create and Manage an Interactive Brokers Order” on page 3-26
. “Request Interactive Brokers Historical Data” on page 3-32

. “Request Interactive Brokers Real-Time Data” on page 3-35

Input Arguments

ib — IB Trader Workstation connection
connection object

4-191

4 Functions — Alphabetical List

IB Trader Workstation connection, specified as an IB Trader Workstation connection
object created using ibtws.

More About

“Workflow for Interactive Brokers” on page 2-6

. Interactive Brokers API Reference Guide

See Also

ibtws

Introduced in R2013b

4-192

http://www.interactivebrokers.com/en/software/api/api.htm

createOrder

createOrder

Create IB Trader Workstation order

Syntax

d = createOrder(ib, ibContract, ibOrder, id)
d = createOrder(ib, ibContract, ibOrder, id,eventhandler)
Description

d = createOrder(ib, ibContract, ibOrder, id) creates an IB Trader Workstation
order over the IB Trader Workstation connection ib using the IB Trader Workstation
10rder object 1bOrder with a unique order identifier id to denote the order
information. createOrder uses the IB Trader Workstation 1Contract object
ibContract to signify the instrument for the transaction. createOrder returns the
Interactive Brokers order data d containing data about the completed order.

d = createOrder(ib, ibContract, ibOrder, id,eventhandler) creates an IB
Trader Workstation order using an event handler function eventhandler. Use the
sample event handler 1bExampleEventHandler or write a custom event handler
function.

Examples

Create an Order

To create an order, set up the IB Trader Workstation connection §b using ibtws.

Create an IB Trader Workstation 1Contract object ibContract. An IContract

object is an Interactive Brokers object for containing the data about a security to process
transactions. Then, create an IB Trader Workstation 10rder object ibOrder. An
10rder object is an Interactive Brokers object that contains the order conditions to place
an order. For an example showing how to create these objects, see “Create and Manage
an Interactive Brokers Order” on page 3-26. For details about creating these objects, see
Interactive Brokers API Reference Guide.

4-193

http://www.interactivebrokers.com/en/software/api/api.htm

4 Functions — Alphabetical List
P

Obtain the next valid order identification number id using ib.
id = orderid(ib)
id =

54110686

Execute the order using ib, ibContract, ibOrder, and id. This code assumes a buy
market order for two shares.

d

createOrder(ib, ibContract, ibOrder, id)

d:
STATUS: "Filled"
FILLED: 2
REMAINING: O
AVG_FILL_PRICE: 787.5600
PERM_ID: "1979798454"
PARENT ID: 0
LAST_FILL_PRICE: 787.5600
CLIENT_ID: O
WHY_HELD: =~

d contains these fields:

+ Status

+ Filled

* Remaining

+ Average fill price

* Permanent identifier
* Parent identifier

+ Last fill price

+ Client identifier

* Why held

Display the data in the STATUS property of d.
d(1,1).STATUS

ans =

4-194

createOrder

Filled
Close the IB Trader Workstation connection.
close(ib)
Create an Order Using an Event Handler

To create an order, set up the IB Trader Workstation connection ib using ibtws.

Create an IB Trader Workstation 1Contract object ibContract. An IContract

object is an Interactive Brokers object for containing the data about a security to process
transactions. Then, create an IB Trader Workstation 10rder object ibOrder. An
10rder object is an Interactive Brokers object that contains the order conditions to place
an order. For an example showing how to create these objects, see “Create and Manage
an Interactive Brokers Order” on page 3-26. For details about creating these objects, see
Interactive Brokers API Reference Guide.

Obtain the next valid order identification number id using ib.
id = orderid(ib)

id

768409.00

Execute the order using ib, ibContract, ibOrder, and id. This code assumes
a buy market order for two shares. Use the sample event handler function
ibExampleEventHandler or write a custom event handler function.

d = createOrder(ib,ibContract, ibOrder, id,@ibExampleEventHandler)
d =
768409.00
Columns 1 through 5
[1x1 COM.TWS TwsCtrl 1] [13.00] [768409.00] *Submitted” [0]
Columns 6 through 12
[2.00] [0] [1679681704.00] [0]1 [0] [0] "

Columns 13 through 14

4-195

http://www.interactivebrokers.com/en/software/api/api.htm

4 Functions — Alphabetical List

4-196

[1x1 struct] "orderStatus”

d contains the unique order identifier id.

ibExampleEventHandler displays order status data in the Command Window. The
columns are:

+ Interactive Brokers ActiveX object

+ Event identifier

* Unique order identifier

* Order status

+ Filled

* Remaining

+ Average fill price

* Permanent identifier

* Parent identifier

+ Last fill price

+ Client identifier

* Why held

* Structure that repeats the contents of the columns

+ Event type
For details about this data, see Interactive Brokers API Reference Guide.
Close the IB Trader Workstation connection.

close(ib)

. “Create an Order Using IB Trader Workstation” on page 1-7

. “Create Interactive Brokers Combination Order” on page 3-39
. “Create and Manage an Interactive Brokers Order” on page 3-26
. “Request Interactive Brokers Historical Data” on page 3-32

. “Request Interactive Brokers Real-Time Data” on page 3-35

http://www.interactivebrokers.com/en/software/api/api.htm

createOrder

Input Arguments

ib — IB Trader Workstation connection
connection object

IB Trader Workstation connection, specified as an IB Trader Workstation connection
object created using ibtws.

ibContract — IB Trader Workstation contract
IContract object

IB Trader Workstation contract, specified as an IB Trader Workstation IContract
object. This object is the instrument or security used in the order transaction. Create
this object by calling the Interactive Brokers API function createContract. For details
about createContract and the attributes that you can set, see Interactive Brokers API
Reference Guide.

ibOorder — IB Trader Workstation order
I0rder object

IB Trader Workstation order, specified as an IB Trader Workstation 10rder object. This
object contains the order conditions, which are: the action of the order, for example, buy
or sell; the order quantity; and the type of order, for example, market or limit. Create this
object by calling the Interactive Brokers API function createOrder. For details about
the attributes that you can set and createOrder, see Interactive Brokers API Reference
Guide.

id — IB Trader Workstation order unique identifier

scalar

IB Trader Workstation order unique identifier, specified as a scalar.
Data Types: double

eventhandler — Event handler
function handle | string

Event handler, specified as a function handle or a string to identify an event handler
function that processes the returned data. Use the sample event handler or write a
custom event handler function. For details, see “Writing and Running Custom Event
Handler Functions with Interactive Brokers” on page 1-26.

4-197

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

4 Functions — Alphabetical List

Example: @eventhandler

Data Types: function_handle | char

Output Arguments

d — Interactive Brokers order data
structure | double

Interactive Brokers order data, returned as a structure containing these fields:

+ Status

+ Filled

* Remaining

+ Average fill price

* Permanent identifier
* Parent identifier

+ Last fill price

+ Client identifier

* Why held

When using an event handler function, d is a double containing the unique order
identifier.

More About
Tips

* ibBuiltInErrMsg appears in the MATLAB workspace. Check the status of
connection and function execution by displaying the contents of this variable.
ibBui I'tInErrMsg contains messages related to:

+ Connection
* Information resulting from executing functions

* Errors

. “Workflow for Interactive Brokers” on page 2-6

4-198

createOrder

. “Writing and Running Custom Event Handler Functions with Interactive Brokers”
on page 1-26
. Interactive Brokers API Reference Guide

See Also

close | getdata | history | ibtws | orderid | realtime | timeseries

Introduced in R2013b

4-199

http://www.interactivebrokers.com/en/software/api/api.htm

4 Functions — Alphabetical List

4-200

getdata

Request current Interactive Brokers data

Syntax

d = getdata(ib, ibContract)
d = getdata(ib, ibContract,eventhandler)
Description

d = getdata(ib, ibContract) requests Interactive Brokers current data over the IB
Trader Workstation connection ib using the IB Trader Workstation 1Contract object
ibContract to signify the instrument.

d = getdata(ib, ibContract,eventhandler) requests Interactive Brokers current
data using an event handler function eventhandler. Use the sample event handler
ibExampleEventHandler or write a custom event handler function.

Examples

Request Current Data

To request Interactive Brokers current data, set up the IB Trader Workstation
connection Ib using ibtws. Create an IB Trader Workstation 1Contract object
ibContract as shown in “Request Interactive Brokers Real-Time Data” on page 3-35.
An IContract object is an Interactive Brokers object for containing the data about a
security to process transactions. For details about creating this object, see Interactive
Brokers API Reference Guide.

Request current data using ib and ibContract.

d

getdata(ib, ibContract)

d =

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

getdata

LAST _PRICE: 6.85
LAST _SIZE: 1.00
VOLUME: 187.00
BID_PRICE: 6.84
BID_SIZE: 14.00
ASK_PRICE: 6.86
ASK_SIZE: 13.00

d contains these fields:

* Last price

+ Last size

* Volume
+ Bid price
+ Bid size
+ Ask price
* Ask size

Display the data in the BID_PRICE field of d.
d.BID_PRICE

ans =
6.84

Close the IB Trader Workstation connection.
close(ib)
Request Current Data Using an Event Handler

To request Interactive Brokers current data, set up the IB Trader Workstation
connection Ib using ibtws. Create an IB Trader Workstation 1Contract object
ibContract as shown in “Request Interactive Brokers Real-Time Data” on page 3-35.
An IContract object is an Interactive Brokers object for containing the data about a
security to process transactions. For details about creating this object, see Interactive
Brokers API Reference Guide.

Request current data using ib, ibContract, and sample event handler function
ibExampleEventHandler. Use ibExampleEventHandler or write a custom event
handler function.

4-201

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

4 Functions — Alphabetical List

d = getdata(ib, ibContract,@ibExampleEventHandler)
d =
1418.00
Columns 1 through 5
[1x1 COM.TWS TwsCtrl 1] [2.00] [1418.00] [0] [5.00]
Columns 6 through 7

[1x1 struct] "tickSize"

d is the request identifier.

After d, ibExampleEventHandler streams current data to the Command Window. Each
column set is a type of tick.

For a size tick, the columns are:

+ Interactive Brokers ActiveX object

+ Event identifier

* Request identifier

* Tick type

+ Size

+ Structure that repeats the contents of the columns

+ Event type

Close the IB Trader Workstation connection.
close(ib)

. “Create an Order Using IB Trader Workstation” on page 1-7

. “Create Interactive Brokers Combination Order” on page 3-39
. “Create and Manage an Interactive Brokers Order” on page 3-26
. “Request Interactive Brokers Historical Data” on page 3-32

. “Request Interactive Brokers Real-Time Data” on page 3-35

4-202

getdata

Input Arguments

ib — IB Trader Workstation connection
connection object

IB Trader Workstation connection, specified as an IB Trader Workstation connection
object created using ibtws.

ibContract — IB Trader Workstation contract
IContract object

IB Trader Workstation contract, specified as an IB Trader Workstation IContract
object. This object is the instrument or security used in the order transaction. Create
this object by calling the Interactive Brokers API function createContract. For details
about createContract and the attributes that you can set, see Interactive Brokers API
Reference Guide.

eventhandler — Event handler
function handle | string

Event handler, specified as a function handle or a string to identify an event handler
function that processes the returned data. Use the sample event handler or write a
custom event handler function. For details, see “Writing and Running Custom Event
Handler Functions with Interactive Brokers” on page 1-26.

Example: @eventhandler

Data Types: function_handle | char

Output Arguments

d — Interactive Brokers current data
structure | double

Interactive Brokers current data, returned as a structure containing these tick types:

+ Last price
+ Last size
* Volume

+ Bid price

4-203

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

4 Functions — Alphabetical List

+ Bid size
+ Ask price
+ Ask size

When using an event handler function, d is a double denoting the request identifier.

More About
Tips

+ ibBui ItInErrMsg appears in the MATLAB workspace. Check the status of
connection and function execution by displaying the contents of this variable.
ibBui lItInErrMsg contains messages related to:

Connection

+ Information resulting from executing functions

* Errors
. “Workflow for Interactive Brokers” on page 2-6
. “Writing and Running Custom Event Handler Functions with Interactive Brokers”
on page 1-26

. Interactive Brokers API Reference Guide

See Also

close | createOrder | history | ibtws | realtime | timeseries

Introduced in R2013b

4-204

http://www.interactivebrokers.com/en/software/api/api.htm

history

history

Request Interactive Brokers historical data

Syntax

d = history(ib, ibContract,startdate,enddate)

d = history(ib, ibContract,startdate,enddate, ticktype,period)
d = history(ib, ibContract,startdate,enddate, ticktype,period,

tradehours)
d = history(ib, ibContract,startdate,enddate, ticktype,period,
tradehours,eventhandler)

Description

d = history(ib, ibContract,startdate,enddate) requests Interactive

Brokers historical data using the IB Trader Workstation connection ib and IB Trader
Workstation IContract object ibContract to signify the instrument. history
requests data from startdate through enddate. The default tick type is "TRADES" and
default period is "1 day”.

d = history(ib, ibContract,startdate,enddate, ticktype,period) requests
Interactive Brokers historical data for a specific type of market data tick ticktype and
bar size period.

d = history(ib, ibContract,startdate,enddate, ticktype,period,
tradehours) requests Interactive Brokers historical data using the flag tradehours to
include all data or only data within regular trading hours.

d = history(ib, ibContract,startdate,enddate, ticktype,period,
tradehours,eventhandler) requests Interactive Brokers historical data
using an event handler function eventhandler. Use the sample event handler
ibExampleEventHandler or write a custom event handler function.

4-205

4 Functions — Alphabetical List

4-206

Examples

Request Interactive Brokers Historical Data with TRADES Default Tick Type and 1-Day Default
Period

To request historical data, set up the IB Trader Workstation connection 1b using ibtws.
Create an IB Trader Workstation 1Contract object ibContract as shown in “Request
Interactive Brokers Historical Data” on page 3-32. An 1Contract object is an Interactive
Brokers object for containing the data about a security to process transactions. For
details about creating this object, see Interactive Brokers API Reference Guide.

Request the last 5 days of historical data using ib and ibContract.

startdate = floor(now)-5;
enddate = floor(now);

d = history(ib, ibContract,startdate,enddate)

d =
1.0e+05 *
.3534
.3534
.3534
.3534
.3534

.0079
.0078
.0079
.0079
.0078

.0080
.0080
.0079
.0080
.0080

.0078
.0078
.0078
.0076
.0077

.0078
.0079
.0078
.0078
.0080

.2386
.1669
.1982
.3188
.5568

1727
.1075
.1420
.2239
.3723

-0079
-0079
.0078
.0077
-0079

ENIENENENEN]
ocooooo
cooooo
ocooooo
ocooooo
ocoooo
cooooo
ocoooo
ocooooo

d returns the historical data for 5 days. When ticktype and period are not specified
as input arguments, history returns historical data using the default ticktype of
"TRADES" and the default period of "1 day".

Each row of d contains historical data for 1 day. The columns in matrix d are:

+ Numeric representation of a date

* Open price

+ High price

* Low price

* Close price

* Volume

* Bar count

* Weighted average price

+ Flag indicating if there are gaps in the bar

http://www.interactivebrokers.com/en/software/api/api.htm

history

Display the open price for the most recent record in matrix d.
d(1,2)
ans =

790.0000
Close the IB Trader Workstation connection.
close(ib)
Request Interactive Brokers Historical Data with BID Tick Type and 1-Week Period

To request historical data, set up the IB Trader Workstation connection ib using ibtws.
Create an IB Trader Workstation IContract object ibContract as shown in “Request
Interactive Brokers Historical Data” on page 3-32. An IContract object is an Interactive
Brokers object for containing the data about a security to process transactions. For
details about creating this object, see Interactive Brokers API Reference Guide.

Request the last 50 days of historical data using ib, ibContract, and these arguments:

+ Start date is 50 days ago.

* End date is the current moment.
* Tick type is "BID".

* Barsizeis "1W".

startdate = floor(now)-50;
enddate = floor(now);

ticktype = "BID";
period = "1W";

d = history(ib,ibContract,startdate,enddate, ticktype,period)

d =

1.0e+05 *

7.3529 0.0080 0.0081 0.0078 0.0081 -0.0000 -0.0000 -0.0000 0
7.3530 0.0080 0.0084 0.0080 0.0083 -0.0000 -0.0000 -0.0000 0
7.3531 0.0082 0.0084 0.0081 0.0081 -0.0000 -0.0000 -0.0000 0
7.3532 0.0080 0.0083 0.0079 0.0081 -0.0000 -0.0000 -0.0000 0
7.3532 0.0081 0.0082 0.0079 0.0079 -0.0000 -0.0000 -0.0000 0
7.3533 0.0079 0.0081 0.0078 0.0078 -0.0000 -0.0000 -0.0000 0
7.3534 0.0078 0.0079 0.0077 0.0079 -0.0000 -0.0000 -0.0000 0
7.3534 0.0079 0.0080 0.0076 0.0080 -0.0000 -0.0000 -0.0000 0

d returns the historical data for 50 days.

Each row of d contains historical data for 1 week.

4-207

http://www.interactivebrokers.com/en/software/api/api.htm

4 Functions — Alphabetical List

4-208

The columns in matrix d are:

+ Numeric representation of a date

* Open price

* High price

* Low price

* Close price

* Volume

* Bar count

* Weighted average price

+ Flag indicating if there are gaps in the bar

Display the high price for the most recent record in matrix d.
d(1,3)

ans =
810

Close the IB Trader Workstation connection.
close(ib)
Request Interactive Brokers Historical Data with TRADES Default Tick Type and 1-Month Period

To request historical data, set up the IB Trader Workstation connection ib using ibtws.
Create an IB Trader Workstation 1Contract object ibContract as shown in “Request
Interactive Brokers Historical Data” on page 3-32. An 1Contract object is an Interactive
Brokers object for containing the data about a security to process transactions. For
details about creating this object, see Interactive Brokers API Reference Guide.

Request the last 50 days of historical data using ib, ibContract, and these arguments:

+ Start date is 50 days ago.

* End date is the current moment.

* The empty string denotes the default tick type " TRADES".
* Barsizeis "1M".

startdate = floor(now)-50;

http://www.interactivebrokers.com/en/software/api/api.htm

history

enddate = floor(now);

ticktype = ;
period = "1M";

d = history(ib, ibContract,startdate,enddate, ticktype,period)

d =

1.0e+05 *
7.3529 0.0079 0.0081 0.0078 0.0080 1.9128 1.3384 0.0080 0
7.3532 0.0080 0.0084 0.0079 0.0079 4.0250 2.6757 0.0082 0
7.3534 0.0079 0.0081 0.0076 0.0080 3.6047 2.4843 0.0079 0

d returns the historical data for 50 days.

Each row of d contains historical data for 1 month.
The columns in matrix d are:

* Numeric representation of a date

* Open price

* High price

* Low price

+ Close price

* Volume

* Bar count

* Weighted average price

+ Flag indicating if there are gaps in the bar

Display the low price for the most recent record in matrix d.
d(1,4)

ans =
780

Close the IB Trader Workstation connection.
close(ib)
Request Interactive Brokers Historical Data Within Regular Trading Hours

To request historical data, set up the IB Trader Workstation connection Ib using ibtws.
Create an IB Trader Workstation IContract object ibContract as shown in “Request

4-209

4 Functions — Alphabetical List

4-210

Interactive Brokers Historical Data” on page 3-32. An IContract object is an Interactive
Brokers object for containing the data about a security to process transactions. For
details about creating this object, see Interactive Brokers API Reference Guide.

Request the last 50 days of historical data using ib, ibContract, and these arguments:

+ Start date is 50 days ago.

* End date is the current moment.

* The empty string denotes the default tick type " TRADES".
* Barsizeis "1M".

* Within regular trading hours.

startdate = floor(now)-50;

enddate = floor(now);

ticktype = "7;

period = "1M";
tradehours = true;

d = history(ib, ibContract,startdate,enddate, ticktype,period, ...
tradehours)
d =

Columns 1 through 5

735805.00 591.25 599.55 585.21 588.85
735812.00 587.50 592.45 562.80 565.90

735819.00 568.85 575.32 560.00 568.45

Columns 6 through 9

-1.00 -1.00 -1.00 0
-1.00 -1.00 -1.00 0

-1.00 -1.00 -1.00 0

d returns the historical data for 50 days.
Each row of d contains historical data for 1 month.
The columns in matrix d are:

+ Numeric representation of a date
* Open price

* High price

http://www.interactivebrokers.com/en/software/api/api.htm

history

* Low price

* Close price

* Volume

* Bar count

* Weighted average price

+ Flag indicating if there are gaps in the bar

Display the low price for the most recent record in matrix d.
d(1,4)

ans =
585.21

Close the IB Trader Workstation connection.
close(ib)
Request Interactive Brokers Historical Data Using an Event Handler

To request historical data, set up the IB Trader Workstation connection ib using ibtws.
Create an IB Trader Workstation 1Contract object ibContract as shown in “Request
Interactive Brokers Historical Data” on page 3-32. An 1Contract object is an Interactive
Brokers object for containing the data about a security to process transactions. For
details about creating this object, see Interactive Brokers API Reference Guide.

Request the last 50 days of historical data using ib, ibContract, and these arguments:

+ Start date is 50 days ago.

* End date is the current moment.

* The empty string denotes the default tick type " TRADES".
* Barsizeis "1IM".

* Within regular trading hours.

* Sample event handler function 1bExampleEventHandler.

Use ibExampleEventHandler or write a custom event handler function.

startdate = floor(now)-50;
enddate = floor(now);
ticktype = "°;

4-211

http://www.interactivebrokers.com/en/software/api/api.htm

4 Functions — Alphabetical List
P

period = "1M";
tradehours = true;
eventhandler = "ibExampleEventHandler”;

d = history(ib, ibContract,startdate,enddate, ticktype,period, ...
tradehours,eventhandler)

1576.00
Columns 1 through 4
[1x1 COM.TWS_TwsCtril_1] [22.00] [1576.00] "20140718"
Columns 5 through 10
[582.50] [596.76] [568.51] [594.94] [-1.00] [-1.00]
Columns 11 through 14

[-1.00] [0] [1x1 struct] “historicalData”

d is the request identifier.

After d, ibExampleEventHandler streams historical data to the Command Window.
The columns are:

+ Interactive Brokers ActiveX object

* Event identifier

* Request identifier

+ Date

* Open price

* High price

* Low price

* Close price

* Volume

* Bar count

* Weighted average price

* Flag indicating if there are gaps in the bar

* Structure that repeats the contents of the columns

+ Event type

4-212

history

Close the IB Trader Workstation connection.
close(ib)

. “Create an Order Using IB Trader Workstation” on page 1-7

. “Create Interactive Brokers Combination Order” on page 3-39
. “Create and Manage an Interactive Brokers Order” on page 3-26
. “Request Interactive Brokers Historical Data” on page 3-32

. “Request Interactive Brokers Real-Time Data” on page 3-35

Input Arguments

ib — IB Trader Workstation connection
connection object

IB Trader Workstation connection, specified as an IB Trader Workstation connection
object created using ibtws.

ibContract — IB Trader Workstation contract
IContract object

IB Trader Workstation contract, specified as an IB Trader Workstation IContract
object. This object is the instrument or security used in the order transaction. Create
this object by calling the Interactive Brokers API function createContract. For details
about createContract and the attributes that you can set, see Interactive Brokers API
Reference Guide.

startdate — Start date
date string | date scalar

Start date, specified as a starting date string or scalar.

Data Types: double | char

enddate — End date
date string | date scalar

End date, specified as an ending date string or scalar.

Data Types: double | char

4-213

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

4 Functions — Alphabetical List
P

ticktype — Types of market data ticks
"TRADES*® (default) | "MIDPOINT" | "BID" | "ASK" | "BID_ASK" |
"HISTORICAL_VOLATILITY"® | "OPTION_IMPLIED_VOLATILITY"

Types of market data ticks, specified as one of the preceding enumerated strings. The
Interactive Brokers API predetermines these strings to denote tick values to collect.

period — Bar size
"1 day” (default) | *2W*" | "1M*

Bar size, specified as one of the preceding enumerated strings predetermined by the
Interactive Brokers API that denote the periodicity for collecting data.

tradehours — Trading hours
false (default) | true

Trading hours, specified as the logical true or False. When this flag is set to true, this
function returns data only within regular trading hours. Otherwise, this function returns
all data.

Data Types: logical

eventhandler — Event handler
function handle | string

Event handler, specified as a function handle or a string to identify an event handler
function that processes the returned data. Use the sample event handler or write a
custom event handler function. For details, see “Writing and Running Custom Event
Handler Functions with Interactive Brokers” on page 1-26.

Example: @eventhandler

Data Types: function_handle | char

Output Arguments

d — Interactive Brokers historical data
matrix | double

Interactive Brokers historical data, returned as a matrix with these columns:

* Numeric representation of a date

4-214

history

* Open price

* High price

* Low price

* Close price

* Volume

* Bar count

* Weighted average price

+ Flag indicating if there are gaps in the bar

When using an event handler function, d is a double denoting the request identifier.

More About

Tips

* ibBuiltInErrMsg appears in the MATLAB workspace. Check the status of
connection and function execution by displaying the contents of this variable.
ibBui I'tInErrMsg contains messages related to:
+ Connection

Information resulting from executing functions

* Errors
. “Workflow for Interactive Brokers” on page 2-6
. “Writing and Running Custom Event Handler Functions with Interactive Brokers”
on page 1-26

. Interactive Brokers API Reference Guide

See Also

close | createOrder | getdata | ibtws | realtime | timeseries

Introduced in R2013b

4-215

http://www.interactivebrokers.com/en/software/api/api.htm

4 Functions — Alphabetical List

4-216

timeseries

Request Interactive Brokers aggregated intraday data

Syntax

d = timeseries(ib, ibContract,startdate,enddate,barsize)

d = timeseries(ib, ibContract,startdate,enddate,barsize, ticktype)
d = timeseries(ib, ibContract,startdate,enddate,barsize, ticktype,

tradehours)
d = timeseries(ib, ibContract,startdate,enddate,barsize, ticktype,
tradehours,eventhandler)

Description

d = timeseries(ib, ibContract,startdate,enddate,barsize) requests
Interactive Brokers aggregated intraday data using the IB Trader Workstation
connection i1b and IB Trader Workstation IContract object ibContract to signify the
instrument. Request data between startdate and enddate using the tick aggregation
interval barsize for default tick type "TRADES".

d = timeseries(ib, ibContract,startdate,enddate,barsize,ticktype)
requests Interactive Brokers aggregated intraday data for a specific type of market data
tick ticktype.

d = timeseries(ib, ibContract,startdate,enddate,barsize, ticktype,
tradehours) requests Interactive Brokers aggregated intraday data using the flag
tradehours to include all data or only data within regular trading hours.

d = timeseries(ib, ibContract,startdate,enddate,barsize, ticktype,
tradehours,eventhandler) requests Interactive Brokers aggregated intraday
data using an event handler function eventhandler. Use the sample event handler
ibExampleEventHandler or write a custom event handler function.

timeseries

Examples

Request Interactive Brokers Intraday Data Aggregated Every 5 Minutes with TRADES Default
Tick Type

To request intraday data, set up the IB Trader Workstation connection ib using
ibtws. Create an IB Trader Workstation 1Contract object ibContract as shown
in “Request Interactive Brokers Real-Time Data” on page 3-35. An IContract object
is an Interactive Brokers object for containing the data about a security to process
transactions. For details about creating this object, see Interactive Brokers API
Reference Guide.

Request intraday data aggregated every 5 minutes using ib and ibContract.

startdate = floor(now);
enddate now;
barsize "5 mins®;

d = timeseries(ib,ibContract,startdate,enddate,barsize)

d =

735329.40 6.91 6.91 6.85 6.85 158.00 13.00 6.87
735329.40 6.85 6.87 6.85 6.87 29.00 24.00 6.86
735329.40 6.87 6.89 6.87 6.87 13.00 13.00 6.88

d returns the aggregated 5-minute data with default tick type "TRADES".
Each row in matrix d represents a 5-minute interval.
The columns in matrix d are:

* Numeric representation of a date

* Open price

* High price

* Low price

+ Close price

* Volume

* Bar count

* Weighted average price

* Flag indicating if there are gaps in the bar

4-217

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

4 Functions — Alphabetical List

Display the open price for the most recent bar in matrix d.
d(1,2)

ans =
6.91

Close the IB Trader Workstation connection.
close(ib)
Request Interactive Brokers Intraday Data Aggregated Every 10 Minutes with a BID Tick Type

To request intraday data, set up the IB Trader Workstation connection ib using
ibtws. Create an IB Trader Workstation 1Contract object ibContract as shown
in “Request Interactive Brokers Real-Time Data” on page 3-35. An IContract object
is an Interactive Brokers object for containing the data about a security to process
transactions. For details about creating this object, see Interactive Brokers API
Reference Guide.

Request intraday data aggregated every 10 minutes using ib, ibContract, and "BID"

tick type.

startdate = floor(now);
enddate = now;

barsize = "10 mins”;

ticktype = "BID";

d = timeseries(ib, ibContract,startdate,enddate,barsize, ticktype)

d =

735329.17 6.38 6.38 6.38 6.38 -1.00 -1.00 -1.00
735329.17 6.38 6.38 6.38 6.38 -1.00 -1.00 -1.00
735329.18 6.38 6.38 6.38 6.38 -1.00 -1.00 -1.00

d returns the aggregated 10-minute data for "BID" tick type.
Each row in matrix d represents a 10-minute interval.

The columns in matrix d are:

+ Numeric representation of a date

* Open price

4-218

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

timeseries

* High price

* Low price

+ Close price

* Volume

* Bar count

+ Weighted average price

* Flag indicating if there are gaps in the bar

Display the high price for the most recent bar in matrix d.
d(1.3)

ans =
6.38

Close the IB Trader Workstation connection.
close(ib)
Request Interactive Brokers Intraday Data Within Regular Trading Hours

To request intraday data, set up the IB Trader Workstation connection ib using
ibtws. Create an IB Trader Workstation 1Contract object ibContract as shown
in “Request Interactive Brokers Real-Time Data” on page 3-35. An IContract object
is an Interactive Brokers object for containing the data about a security to process
transactions. For details about creating this object, see Interactive Brokers API
Reference Guide.

Request intraday data using ib, ibContract, and these arguments:

* Start date is this morning.

* End date is the current moment.
+ Aggregated every 10 minutes.

* Tick type is "BID".

* Within regular trading hours.
startdate = floor(now);

enddate now;
barsize "10 mins*®;

4-219

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

4 Functions — Alphabetical List

ticktype = "BID";
tradehours = true;

d = timeseries(ib, ibContract,startdate,enddate,barsize,ticktype,. ..
tradehours)
d =

Columns 1 through 5

735852.40 580.70 582.12 580.12 580.27
735852.40 580.27 580.75 579.70 579.80

735852.40 579.80 579.88 578.33 579.44

Columns 6 through 9

-1.00 -1.00 -1.00 0
-1.00 -1.00 -1.00 0
0

-1.00 -1.00 -1.00

d returns the aggregated 10-minute data for "BID" tick type.
Each row in matrix d represents a 10-minute interval.
The columns in matrix d are:

* Numeric representation of a date

* Open price

* High price

* Low price

+ Close price

* Volume

* Bar count

* Weighted average price

+ Flag indicating if there are gaps in the bar

Display the high price for the most recent bar in matrix d.
d(1,3)

ans =
582.12

Close the IB Trader Workstation connection.

4-220

timeseries

close(ib)
Request Interactive Brokers Intraday Data Using an Event Handler

To request intraday data, set up the IB Trader Workstation connection ib using
ibtws. Create an IB Trader Workstation 1Contract object ibContract as shown
in “Request Interactive Brokers Real-Time Data” on page 3-35. An IContract object
is an Interactive Brokers object for containing the data about a security to process
transactions. For details about creating this object, see Interactive Brokers API
Reference Guide.

Request intraday data using ib, ibContract, and these arguments:

+ Start date is this morning.

* End date is the current moment.
+ Aggregated every 10 minutes.

+ Tick typeis "BID".

* Within regular trading hours.

+ Sample event handler function 1bExampleEventHandler.
Use ibExampleEventHandler or write a custom event handler function.

startdate =
enddate now;
barsize "10 mins";

ticktype = "BID";

tradehours = true;

eventhandler = "ibExampleEventHandler”;

floor(now);

d = timeseries(ib, ibContract,startdate,enddate,barsize, ticktype, ...
tradehours, eventhandler)

4853.00
Columns 1 through 3
[1x1 COM.TWS_TwsCtri_1] [22.00] [4853.00]
Columns 4 through 7
"20140909 15:55:00" [580.20] [581.40] [580.09]
Columns 8 through 13

[581.01] [-1.00] [-1.00] [-1.00] [o] [1x1 struct]

4-221

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

4 Functions — Alphabetical List

Column 14

“historicalData*”

d is the request identifier.

After d, ibExampleEventHandler streams intraday data to the Command Window. The
columns are:

+ Interactive Brokers ActiveX object

+ Event identifier

* Request identifier

* Date

* Open price

* High price

* Low price

+ Close price

* Volume

* Bar count

* Weighted average price

+ Flag indicating if there are gaps in the bar

+ Structure that repeats the contents of the columns

+ Event type

Close the IB Trader Workstation connection.
close(ib)

. “Request Interactive Brokers Real-Time Data” on page 3-35

Input Arguments

ib — IB Trader Workstation connection
connection object

IB Trader Workstation connection, specified as an IB Trader Workstation connection
object created using ibtws.

4-222

timeseries

ibContract — IB Trader Workstation contract
IContract object

IB Trader Workstation contract, specified as an IB Trader Workstation 1Contract
object. This object is the instrument or security used in the order transaction. Create
this object by calling the Interactive Brokers API function createContract. For details
about createContract and the attributes that you can set, see Interactive Brokers API
Reference Guide.

startdate — Start date
date string | date scalar

Start date, specified as a starting date string or scalar.

Data Types: double | char

enddate — End date
date string | date scalar

End date, specified as an ending date string or scalar.

Data Types: double | char

barsize — Tick aggregation interval
"10 secs”" | "15 secs 30 secs” | "1 min® | "2 mins® | "3 mins" | ...

Tick aggregation interval, specified as one of the following enumerated strings. The
Interactive Brokers API predetermines these strings to denote the size of aggregated
bars for collecting data.

* "10 secs”

* "15 secs”

*+ "30 secs”

* "1 min®

* "2 mins*

* "3 mins*

* "5 mins*

* "10 mins*

* "15 mins”

*+ "20 mins-

4-223

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

4 Functions — Alphabetical List
P

4-224

+ "30 mins*
* "1 hour-
+ "2 hours
+ "3 hours
* "4 hours*®
* "8 hours*
ticktype — Types of market data ticks

"TRADES*® (default) | "MIDPOINT" | "BID" | "ASK" | "BID_ASK" |
"HISTORICAL_VOLATILITY"® | "OPTION_IMPLIED_VOLATILITY"

Types of market data ticks, specified as one of the preceding enumerated strings. The
Interactive Brokers API predetermines these strings to denote tick values to collect.

tradehours — Trading hours
false (default) | true

Trading hours, specified as the logical true or false. When this flag is set to true, this
function returns data only within regular trading hours. Otherwise, this function returns
all data.

Data Types: logical

eventhandler — Event handler
function handle | string

Event handler, specified as a function handle or a string to identify an event handler
function that processes the returned data. Use the sample event handler or write a
custom event handler function. For details, see “Writing and Running Custom Event
Handler Functions with Interactive Brokers” on page 1-26.

Example: @eventhandler

Data Types: function_handle | char

Output Arguments

d — Interactive Brokers aggregated intraday data
matrix | double

timeseries

Interactive Brokers aggregated intraday data, returned as a matrix with these columns:

Numeric representation of a date

Open price

High price

Low price

Close price

Volume

Bar count

Weighted average price

Flag indicating if there are gaps in the bar

When using an event handler function, d is a double denoting the request identifier.

More About

Tips

ibBui ltInErrMsg appears in the MATLAB workspace. Check the status of
connection and function execution by displaying the contents of this variable.
ibBui ItInErrMsg contains messages related to:

+ Connection

+ Information resulting from executing functions

Errors

“Workflow for Interactive Brokers” on page 2-6

“Writing and Running Custom Event Handler Functions with Interactive Brokers”

on page 1-26

Interactive Brokers API Reference Guide

See Also

close | createOrder | getdata | history | ibtws | realtime

Introduced in R2013b

4-225

http://www.interactivebrokers.com/en/software/api/api.htm

4 Functions — Alphabetical List

accounts

Retrieve Interactive Brokers account information

Syntax

d = accounts(ib,acctno)
d accounts(ib,acctno,eventhandler)

Description

d = accounts(ib,acctno) retrieves account information using Interactive Brokers
connection Ib and account number acctno.

d = accounts(ib,acctno,eventhandler) retrieves account information
using an event handler function eventhandler. Use the sample event handler
ibExampleEventHandler or write a custom event handler function.

Examples

Retrieve Account Information

Create the IB Trader Workstation connection ib on the local machine using port number
7496.

ib = ibtws("",7496);
Retrieve account information for account number acctno using ib.
acctno = “AB123456°;

d

accounts(ib,acctno)
d =

AccountCode: "AB123456*"
AccountReady: "true”

4-226

accounts

AccountType: F"LLC*

d is a structure with the fields containing the account information. Here, the fields are:

* Account code
* IB Trader Workstation internal use only

* Account type

For details about this data and the other fields, see Interactive Brokers API Reference
Guide.

Close the IB Trader Workstation connection.
close(ib)
Retrieve Account Information Using an Event Handler

Create the IB Trader Workstation connection ib on the local machine using port number
7496.

ib = ibtws("",7496);

Retrieve account information for account number acctno using ib. Use the sample
event handler ibExampleEventHandler to display the IB Trader Workstation account
information in the Command Window. Use ibExampleEventHandler or write a custom
event handler function.

acctno = "AB123456°;

d accounts(ib,acctno,@ibExampleEventHandler)
d =
1
Columns 1 through 7
[1x1 COM.TWS TwsCtrl 1] [7] "AccountCode* "AB123456" " "AB123456"

Collumn 8

"updateAccountVvValue*

4-227

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

4 Functions — Alphabetical List

d is an empty double.

The sample event handler ibExampleEventHandler displays the account information
in the Command Window. The columns are:

* Interactive Brokers ActiveX object

* Event identifier

* Account code

+ Event key

* Currency

* Account name

* Structure that repeats the contents of the columns

* Request type
For details about this data, see Interactive Brokers API Reference Guide.

Close the IB Trader Workstation connection.
close(ib)

. “Create and Manage an Interactive Brokers Order” on page 3-26

Input Arguments

ib — IB Trader Workstation connection
connection object

IB Trader Workstation connection, specified as an IB Trader Workstation connection
object created using ibtws.

acctno — Account number
string

Account number, specified as a string that identifies the Interactive Brokers account
number.

Example:

4-228

http://www.interactivebrokers.com/en/software/api/api.htm

accounts

Data Types: char

eventhandler — Event handler
function handle | string

Event handler, specified as a function handle or a string to identify an event handler
function that processes the returned data. Use the sample event handler or write a
custom event handler function. For details, see “Writing and Running Custom Event
Handler Functions with Interactive Brokers” on page 1-26.

Example: @eventhandler

Data Types: function_handle | char

Output Arguments

d — Account information
structure | double

Account information, returned as a structure containing fields with the Interactive
Brokers account information. When using an event handler function, d is an empty
double.

More About
Tips

* ibBuiltInErrMsg appears in the MATLAB workspace. Check the status of
connection and function execution by displaying the contents of this variable.
ibBui I'tInErrMsg contains messages related to:

Connection

+ Information resulting from executing functions

* Errors
. “Workflow for Interactive Brokers” on page 2-6
. “Writing and Running Custom Event Handler Functions with Interactive Brokers”
on page 1-26

. Interactive Brokers API Reference Guide

4-229

http://www.interactivebrokers.com/en/software/api/api.htm

4 Functions — Alphabetical List

See Also

close | createOrder | history | ibtws | timeseries

Introduced in R2015a

4-230

contractdetails

contractdetails

Request Interactive Brokers contract details

Syntax

[d,reqid] = contractdetails(ib, ibContract)
[d,reqid] = contractdetails(ib, ibContract,eventhandler)

Description

[d,reqid] = contractdetails(ib, ibContract) requests Interactive Brokers
contract details using IB Trader Workstation connection b and IB Trader Workstation
IContract object ibContract.

[d,reqid] = contractdetails(ib, ibContract,eventhandler) requests
Interactive Brokers contract details using an event handler function eventhandler. Use
the sample event handler ibExampleEventHandler or write a custom event handler
function.

Examples

Request Interactive Brokers Contract Details

Create the IB Trader Workstation connection ib on the local machine using port number
7496.

ib = ibtws("",7496);

Create the IB Trader Workstation 1Contract object ibContract. Here, this object
describes a security with these property values:

* Google symbol
+ Stock security type
+ Aggregate exchange

4-231

4 Functions — Alphabetical List

4-232

* USD currency

ibContract = ib.Handle.createContract;
ibContract.symbol = "GO0OG";
ibContract.secType = "STK";
ibContract.exchange "SMART " ;
ibContract.currency "UsSD";

For details about the 1Contract object, see Interactive Brokers API Reference Guide.

Request contract details data using ib and 1bContract.

[d,reqid] = contractdetails(ib, ibContract)

d =
marketName: “NMS*®
tradingClass: °"NMS*
minTick: 0.01

reqid =

1269

d is a structure containing the contract details data including the market name, trading
class name, and minimum tick. For details about this data, see Interactive Brokers API
Reference Guide.

reqid is a number that Interactive Brokers uses to track this contract details data
request.

Close the IB Trader Workstation connection.
close(ib)
Request Interactive Brokers Contract Details Using an Event Handler

Create the IB Trader Workstation connection ib on the local machine using port number
7496.

ib = ibtws("",7496);

Create the IB Trader Workstation 1Contract object ibContract. Here, this object
describes a security with these property values:

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

contractdetails

* Google symbol
+ Stock security type
+ Aggregate exchange

+ USD currency

ibContract = ib.Handle.createContract;

ibContract.symbol = "GO0G";

ibContract.secType = "STK";

ibContract.exchange = "SMART";

ibContract.currency = "USD";

For details about the 1Contract object, see Interactive Brokers API Reference Guide.

Request contract details data using ib, ibContract, and sample event handler function
ibExampleEventHandler. Use ibExampleEventHandler or write a custom event
handler function.

[d,reqid] = contractdetails(ib, ibContract,@ibExampleEventHandler)
d =
1269
reqid =
1269
Columns 1 through 4
[1x1 COM.TWS TwsCtril_1] [100] [1269] [1x1 Interface.Tws_ActiveX_Control_mc
Columns 5 through 6
[1x1 struct] "contractDetai IsEx”

d and reqgid return a number that Interactive Brokers uses to track this contract details
data request.

After these variables, ibExampleEventHandler returns contract details data to the
Command Window. The columns are:

+ Interactive Brokers ActiveX object

+ Event identifier

4-233

http://www.interactivebrokers.com/en/software/api/api.htm

4 Functions — Alphabetical List

4-234

* Request identifier
+ Contract details ActiveX object
+ Structure that repeats the contents of the columns

* Request type

For details about this data, see Interactive Brokers API Reference Guide.

Close the IB Trader Workstation connection.
close(ib)

. “Create and Manage an Interactive Brokers Order” on page 3-26

Input Arguments

ib — IB Trader Workstation connection
connection object

IB Trader Workstation connection, specified as an IB Trader Workstation connection
object created using ibtws.

ibContract — IB Trader Workstation contract
IContract object

IB Trader Workstation contract, specified as an IB Trader Workstation IContract
object. This object is the instrument or security used in the order transaction. Create
this object by calling the Interactive Brokers API function createContract. For details
about createContract and the attributes that you can set, see Interactive Brokers API
Reference Guide.

eventhandler — Event handler
function handle | string

Event handler, specified as a function handle or a string to identify an event handler
function that processes the returned data. Use the sample event handler or write a
custom event handler function. For details, see “Writing and Running Custom Event
Handler Functions with Interactive Brokers” on page 1-26.

Example: @eventhandler

Data Types: function_handle | char

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

contractdetails

Output Arguments

d — Interactive Brokers contract details data
structure | scalar

Interactive Brokers contract details data, returned as a structure. When using an event
handler function, d is a scalar that denotes the contract detail data request identifier.

reqid — Contract detail data request identifier
scalar

Contract detail data request identifier, returned as a scalar. Interactive Brokers uses this
number to match responses to the correct data request when multiple data requests are
present.

More About
Tips
+ 1bBui ItInErrMsg appears in the MATLAB workspace. Check the status of
connection and function execution by displaying the contents of this variable.
ibBui ItInErrMsg contains messages related to:
Connection

+ Information resulting from executing functions

* Errors
. “Workflow for Interactive Brokers” on page 2-6
. “Writing and Running Custom Event Handler Functions with Interactive Brokers”
on page 1-26

. Interactive Brokers API Reference Guide

See Also

close | createOrder | history | ibtws | timeseries

Introduced in R2015a

4-235

http://www.interactivebrokers.com/en/software/api/api.htm

4 Functions — Alphabetical List

4-236

executions

Request Interactive Brokers execution data

Syntax

d = executions(ib,filter)
d = executions(ib,filter,eventhandler)
Description

d = executions(ib, filter) requests Interactive Brokers execution data using
the IB Trader Workstation connection ib and the Interactive Brokers execution filter
filter.

d = executions(ib, filter,eventhandler) requests Interactive Brokers execution
data using an event handler function eventhandler. Use the sample event handler
ibExampleEventHandler or write a custom event handler function.

Examples

Request Execution Filter Data

Create the IB Trader Workstation connection ib on the local machine using port number
7496.

ib = ibtws("",7496);

Create the IB Trader Workstation execution filter 1ExecutionFilter object Filter.
Here, this object specifies these property values:

* Buy side

+ Stock security type

+ Aggregate exchange

* Google symbol

Ffilter = ib.Handle.createExecutionFilter;

executions

filter.side = "BUY";
Ffilter.secType = "STK";
Ffilter_exchange = "SMART";
Ffilter.symbol = "GO0OG";

For details about the 1ExecutionFilter object, see Interactive Brokers API Reference
Guide.

Request IB Trader Workstation execution filter data using ib and filter.
d = executions(ib,Filter)
d =
enddetails: [1x1 struct]
d is a structure containing the execution filter data in the structure enddetails.

Display the execution filter data.

d.enddetails

ans =
Type: “execDetailsEnd*®
Source: [1x1 COM.TWS_ TwsCtrl_1]
EventlID: 38

reqld: 1
The structure enddetai ls contains these fields:

+ Data request type
+ Interactive Brokers ActiveX object
+ Event identifier

+ Execution filter data request identifier

Close the IB Trader Workstation connection.
close(ib)

Request Execution Filter Data Using an Event Handler

Create the IB Trader Workstation connection ib on the local machine using port number
7496.

4-237

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

4 Functions — Alphabetical List

4-238

ib = ibtws("",7496);

Create the IB Trader Workstation execution filter 1ExecutionFi lter object Filter.
Here, this object specifies these property values:

* Buy side

* Stock security type

+ Aggregate exchange

* Google symbol

filter = ib.Handle.createExecutionFilter;
Ffilter.side = "BUY";

filter.secType = "STK";

filter_exchange = "SMART";

Ffilter.symbol = "GOOG";

For details about the 1ExecutionFi lter object, see Interactive Brokers API Reference
Guide.

Request IB Trader Workstation execution filter data using ib and filter. Use the
sample event handler 1bExampleEventHandler to display the IB Trader Workstation
execution filter data in the Command Window. Use ibExampleEventHandler or write a
custom event handler function.

d = executions(ib,Ffilter,@ibExampleEventHandler)

d

1
[1x1 COM.TWS TwsCtrl 1] [38] [1] [1x1 struct] "execDetailsend*®
d is an empty double.

ibExampleEventHandler displays the data in the Command Window. The columns are:

+ Interactive Brokers ActiveX object

+ Event identifier

+ Execution filter data request identifier

* Structure that repeats the contents of the columns

* Data request type

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

executions

For details, see Interactive Brokers API Reference Guide.

Close the IB Trader Workstation connection.
close(ib)

. “Create and Manage an Interactive Brokers Order” on page 3-26

Input Arguments

ib — IB Trader Workstation connection
connection object

IB Trader Workstation connection, specified as an IB Trader Workstation connection
object created using ibtws.

filter — IB Trader Workstation execution filter
IExecutionFi lter object

IB Trader Workstation execution filter, specified as a 1ExecutionFi lter object. For
details about this object, see Interactive Brokers API Reference Guide.

Example:

Data Types: struct

eventhandler — Event handler
function handle | string

Event handler, specified as a function handle or a string to identify an event handler
function that processes the returned data. Use the sample event handler or write a
custom event handler function. For details, see “Writing and Running Custom Event
Handler Functions with Interactive Brokers” on page 1-26.

Example: @eventhandler

Data Types: function_handle | char

Output Arguments

d — IB Trader Workstation execution filter data
structure | double

4-239

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

4 Functions — Alphabetical List

IB Trader Workstation execution filter data, returned as a structure. When using an
event handler function, d is an empty double.

More About
Tips

* ibBuiltInErrMsg appears in the MATLAB workspace. Check the status of
connection and function execution by displaying the contents of this variable.
ibBui I'tInErrMsg contains messages related to:

+ Connection

Information resulting from executing functions

* Errors
. “Workflow for Interactive Brokers” on page 2-6
. “Writing and Running Custom Event Handler Functions with Interactive Brokers”
on page 1-26
. Interactive Brokers API Reference Guide
See Also

close | createOrder | getdata | history | ibtws | timeseries

Introduced in R2015a

4-240

http://www.interactivebrokers.com/en/software/api/api.htm

marketdepth

marketdepth

Request Interactive Brokers market depth data

Syntax

d
d

marketdepth(ib, ibContract,depth)
marketdepth(ib, ibContract,depth,eventhandler)

Description

d = marketdepth(ib, ibContract,depth) requests Interactive Brokers market
depth data using the IB Trader Workstation connection ib, IB Trader Workstation
IContract object ibContract, and price level depth.

d = marketdepth(ib, ibContract,depth,eventhandler) requests Interactive
Brokers market depth data using an event handler function eventhandler. Use the
sample event handler 1bExampleEventHandler or write a custom event handler
function.

Examples

Request Market Depth Data

To request Interactive Brokers market depth data, set up the IB Trader Workstation
connection Ib using ibtws. Create an IB Trader Workstation 1Contract object
ibContract as shown in “Request Interactive Brokers Real-Time Data” on page 3-35.
An IContract object is an Interactive Brokers object for containing the data about a
security to process transactions. For details about creating this object, see Interactive
Brokers API Reference Guide.

Request market depth data using 1b and 1bContract. Specify five price levels for
the bid and offer sides for depth. This code assumes 1bContract is an E-mini S&P
500 futures contract with an expiry of December 2014 that trades on the CME Globex
exchange.

depth = 5;

4-241

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

4 Functions — Alphabetical List

4-242

o
1l

marketdepth(ib, ibContract,depth)

bid: [5x2 double]
offer: [5x2 double]

d is a structure that contains the fields for bid and offer price levels.

Display the bid prices for five levels of market depth.

d.bid
ans =
1992.5 495
1992.25 1479
1992 1950
1991.75 1763
1991.5 2117

The first column contains the bid price and the second column contains the bid size.
Close the IB Trader Workstation connection.

close(ib)
Request Market Depth Data Using an Event Handler

To request Interactive Brokers market depth data, set up the IB Trader Workstation
connection Ib using ibtws. Create an IB Trader Workstation 1Contract object
ibContract as shown in “Request Interactive Brokers Real-Time Data” on page 3-35.
An IContract object is an Interactive Brokers object for containing the data about a
security to process transactions. For details about creating this object, see Interactive
Brokers API Reference Guide.

Request market depth data using ib and ibContract. Specify five price levels for

the bid and offer sides for depth. This code assumes ibContract is an E-mini S&P
500 futures contract with an expiry of December 2014 that trades on the CME Globex
exchange. Use the sample event handler function ibExampleEventHandler or write a
custom event handler function.

depth = 5;

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

marketdepth

o
1l

marketdepth(ib, ibContract,depth,@ibExampleEventHandler)

8147

[1x1 COM.TWS TwsCtrl_ 1] [16.00] [8147.00] [0] [0] [1.00] [1988.

d is the request identifier.

After d, ibExampleEventHandler streams market depth data to the Command
Window.

The columns are:

+ Interactive Brokers ActiveX object
+ Event identifier

* Request identifier

* Position

* Operation

+ Side
* Price
+ Size

+ Structure that repeats the contents of the columns

+ Event type

Close the IB Trader Workstation connection.
close(ib)

. “Create and Manage an Interactive Brokers Order” on page 3-26

Input Arguments

ib — IB Trader Workstation connection
connection object

4-243

4 Functions — Alphabetical List

4-244

IB Trader Workstation connection, specified as an IB Trader Workstation connection
object created using ibtws.

ibContract — IB Trader Workstation contract
IContract object

IB Trader Workstation contract, specified as an IB Trader Workstation IContract
object. This object is the instrument or security used in the order transaction. Create
this object by calling the Interactive Brokers API function createContract. For details
about createContract and the attributes that you can set, see Interactive Brokers API
Reference Guide.

depth — IB Trader Workstation market depth
112131 ..

IB Trader Workstation market depth, specified as a scalar from one through 10. This
number denotes the depth of the active book.
Data Types: double

eventhandler — Event handler
function handle | string

Event handler, specified as a function handle or a string to identify an event handler
function that processes the returned data. Use the sample event handler or write a
custom event handler function. For details, see “Writing and Running Custom Event
Handler Functions with Interactive Brokers” on page 1-26.

Example: @eventhandler

Data Types: function_handle | char

Output Arguments

d — IB Trader Workstation market depth data
structure | double

IB Trader Workstation market depth data, returned as a structure containing the price
level data for the bid and offer prices. Price level data consists of the price and size. When
using an event handler function, d is a double denoting the request identifier.

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

marketdepth

More About
Tips

* ibBuiltInErrMsg appears in the MATLAB workspace. Check the status of
connection and function execution by displaying the contents of this variable.
ibBui I'tInErrMsg contains messages related to:

+ Connection

Information resulting from executing functions

* Errors
. “Workflow for Interactive Brokers” on page 2-6
. “Writing and Running Custom Event Handler Functions with Interactive Brokers”
on page 1-26

. Interactive Brokers API Reference Guide

See Also

close | createOrder | history | ibtws | realtime | timeseries

Introduced in R2015a

4-245

http://www.interactivebrokers.com/en/software/api/api.htm

4 Functions — Alphabetical List

4-246

orderid

Obtain next valid order identification number

Syntax

id = orderid(ib)

Description

id = orderid(ib) obtains the next valid order identification number for Interactive
Brokers connection ib.

Examples

Obtain Next Valid Order Identification Number

Create the IB Trader Workstation connection ib on the local machine using port number
7496.

ib = ibtws("",7496);
Obtain the next valid order identification number using ib.
id = orderid(ib)
id =

54110686

id contains the next valid order identification number. Use this number in
createOrder.

Close the IB Trader Workstation connection.
close(ib)

. “Create and Manage an Interactive Brokers Order” on page 3-26

orderid

Input Arguments

ib — IB Trader Workstation connection
connection object

IB Trader Workstation connection, specified as an IB Trader Workstation connection

object created using ibtws.

Output Arguments

id — Next valid order identification number
scalar

Next valid order identification number, returned as a scalar.

More About
Tips

* ibBuiltInErrMsg appears in the MATLAB workspace. Check the status of

connection and function execution by displaying the contents of this variable.

ibBui I'tInErrMsg contains messages related to:

+ Connection
Information resulting from executing functions

+ Errors

. “Workflow for Interactive Brokers” on page 2-6

. Interactive Brokers API Reference Guide

See Also

close | createOrder | getdata | history | ibtws | timeseries

Introduced in R2015a

4-247

http://www.interactivebrokers.com/en/software/api/api.htm

4 Functions — Alphabetical List

4-248

orders

Request Interactive Brokers open order data

Syntax

o0 = orders(ib)

0 = orders(ib,client)
o = orders(ib,client,eventhandler)
Description

0 = orders(ib) requests Interactive Brokers open order data using IB Trader
Workstation connection ib for the current client only.

0 = orders(ib,client) requests Interactive Brokers open order data using IB Trader
Workstation connection ib and a client flag. client denotes requesting data from the
current client or all clients.

o = orders(ib,client,eventhandler) requests Interactive Brokers open order
data using an event handler function eventhandler. Use the sample event handler
ibExampleEventHandler or write a custom event handler function.

Examples

Request Open Order Data

Create the IB Trader Workstation connection ib on the local machine using port number
7496.

ib = ibtws("",7496);

Create the IB Trader Workstation IContract object ibContract. Here, this object
describes a security with these property values:

* Google symbol
* Stock security type

orders

+ Aggregate exchange
* USD currency

ibContract = ib.Handle.createContract;
ibContract._.symbol = "GOOG";
ibContract.secType = "STK";
ibContract._exchange "SMART " ;
ibContract.currency "USD";

Create the IB Trader Workstation 10rder object ibOrder. Here, this object describes a
limit order to sell two shares with a limit price of $590.

ibOrder = ib.Handle.createOrder;
ibOrder.action = "SELL";
ibOrder._totalQuantity = 2;
ibOrder.orderType = "LMT"
ibOrder. ImtPrice = 590;

For details about the 1Contract and 10rder objects, see Interactive Brokers API
Reference Guide.

Create a unique order identifier id.
id = orderid(ib);
Execute the order using:

* IB Trader Workstation connection ib
+ IB Trader Workstation IContract object ibContract
* IB Trader Workstation 10rder object ibOrder

+ Unique order identifier id
d = createOrder(ib, ibContract, ibOrder,id);

Retrieve order information o.

(o]
1

orders(ib)

1x2 struct array with fields:

Type
EventlID

4-249

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

4 Functions — Alphabetical List

4-250

orderld
contract
order
orderState

O contains a structure array. The array contains a structure with data for each open
order. The structure fields are:

* Order type

+ Event identifier

* Order identifier

+ Contract data

* Order data

* Order status

Retrieve the current status of the order.

o.orderState

ans =

status: "Submitted”
initMargin: "1.7976931348623157E308"
maintMargin: "1.7976931348623157E308"

orderState is a structure with fields corresponding to the status of the order. The fields
are order status, initial margin, and maintenance margin. For details on these fields and
the additional fields in orderState, see Interactive Brokers API Reference Guide.

Close the IB Trader Workstation connection.
close(ib)
Request Open Order Data From All Clients

Create the IB Trader Workstation connection ib on the local machine using port number
7496.

ib = ibtws("",7496);

Create the IB Trader Workstation 1Contract object ibContract. Here, this object
describes a security with these property values:

http://www.interactivebrokers.com/en/software/api/api.htm

orders

* Google symbol

+ Stock security type
+ Aggregate exchange
+ USD currency

ibContract = ib.Handle.createContract;
ibContract._.symbol = "GOOG";
ibContract._secType = °"STK";
ibContract._.exchange = "SMART";
ibContract.currency = “USD";

Create the IB Trader Workstation 10rder object ibOrder. Here, this object describes a
limit order to sell two shares with a limit price of $590.

ibOrder = ib.Handle.createOrder;
ibOrder.action = "SELL";
ibOrder.totalQuantity = 2;
ibOrder.orderType = "LMT"
ibOrder. ImtPrice = 590;

For details about the 1Contract and 10rder objects, see Interactive Brokers API
Reference Guide.

Create a unique order identifier id.
id = orderid(ib);
Execute the order using:

+ IB Trader Workstation connection ib
+ IB Trader Workstation IContract object ibContract
+ IB Trader Workstation 10rder object ibOrder

+ Unique order identifier 1d
d = createOrder(ib, ibContract, ibOrder,id);

Retrieve order information o from all clients by setting client to false.

o
|

= orders(ib,false)

1x2 struct array with fields:

4-251

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

4 Functions — Alphabetical List
P

4-252

Type
EventlID
orderld
contract
order
orderState

0 contains a structure array. The array contains a structure with data for each open
order. The structure fields are:

* Order type

* Event identifier

* Order identifier

+ Contract data

* Order data

* Order status

Retrieve the current status of the order.

o.orderState

ans =

status: "Submitted*
initMargin: "1.7976931348623157E308"
maintMargin: "1.7976931348623157E308"

orderState is a structure with fields corresponding to the status of the order. The fields
are order status, initial margin, and maintenance margin. For details on these fields and
the additional fields in orderState, see Interactive Brokers API Reference Guide.

Close the IB Trader Workstation connection.
close(ib)
Request Open Order Data Using an Event Handler

Create the IB Trader Workstation connection ib on the local machine using port number
7496.

ib = ibtws("",7496);

http://www.interactivebrokers.com/en/software/api/api.htm

orders

Create the IB Trader Workstation IContract object ibContract. Here, this object
describes a security with these property values:

* Google symbol

* Stock security type

+ Aggregate exchange

+ USD currency

ibContract = ib.Handle.createContract;

ibContract.symbol = "GOOG";

ibContract.secType = "STK";

ibContract.exchange "SMART " ;
ibContract.currency "UsD";

Create the IB Trader Workstation 10rder object ibOrder. Here, this object describes a
limit order to sell two shares with a limit price of $590.

ibOrder = ib.Handle.createOrder;
ibOrder.action = "SELL";
ibOrder._totalQuantity = 2;
ibOrder.orderType = "LMT*
ibOrder. ImtPrice = 590;

For details about the 1Contract and 10rder objects, see Interactive Brokers API
Reference Guide.

Create a unique order identifier id.
id = orderid(ib);
Execute the order using:

* IB Trader Workstation connection ib
+ IB Trader Workstation IContract object ibContract
+ IB Trader Workstation 10rder object ibOrder

+ Unique order identifier id
d = createOrder(ib, ibContract, ibOrder,id);

Retrieve order information from all clients by setting client to false and
using the sample event handler function ibExampleEventHandler. Use
ibExampleEventHandler or write a custom event handler function.

4-253

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

4 Functions — Alphabetical List
P

o
1l

orders(ib,false,@ibExampleEventHandler)

[1

Columns 1 through 4

[1x1 COM.TWS_TwsCtrl_1] [101] [56947638] [1x1 Interface.Tws_ActiveX_Contr
Columns 5 through 6

[1x1 Interface.Tws_ActiveX_Control_module.l10rder] [1x1 Interface.Tws_ActiveX_Col
Columns 7 through 8

[1x1 struct] "openOrderEx*®

0 contains an empty double because the event handler ibExampleEventHandler
processes the output data.

ibExampleEventHandler displays the output data in the Command Window. Here, IB
Trader Workstation returns:

+ Interactive Brokers ActiveX object

+ Event identifier

* Unique order identifier

+ IB Trader Workstation IContract object

+ IB Trader Workstation 10rder object

* IB Trader Workstation 10rderState object

* Structure that repeats the contents of the columns

* Request type

For details about this data, see Interactive Brokers API Reference Guide.

Close the IB Trader Workstation connection.
close(ib)

. “Create and Manage an Interactive Brokers Order” on page 3-26

4-254

http://www.interactivebrokers.com/en/software/api/api.htm

orders

Input Arguments

ib — IB Trader Workstation connection
connection object

IB Trader Workstation connection, specified as an IB Trader Workstation connection
object created using ibtws.

client — Client flag
true (default) | false

Client flag, specified as a logical. true denotes returning data from the current client
only. False denotes returning data from all clients.
Data Types: logical

eventhandler — Event handler
function handle | string

Event handler, specified as a function handle or a string to identify an event handler
function that processes the returned data. Use the sample event handler or write a
custom event handler function. For details, see “Writing and Running Custom Event
Handler Functions with Interactive Brokers” on page 1-26.

Example: @eventhandler

Data Types: function_handle | char

Output Arguments

0 — Interactive Brokers open order data
structure | double

Interactive Brokers open order data, returned as a structure or an empty double. The
structure contains these fields:

* Order type

* Event identifier

* Order identifier

* Contract data

4-255

4 Functions — Alphabetical List

4-256

Order data

Order status

When using an event handler function, 0 is an empty double.

More About

Tips

ibBui ltInErrMsg appears in the MATLAB workspace. Check the status of
connection and function execution by displaying the contents of this variable.
ibBui ItInErrMsg contains messages related to:

+ Connection
+ Information resulting from executing functions
Errors

Executing orders multiple times using the same IB Trader Workstation connection
can cause this kind of warning message: Warning: Cannot unregister ‘openOrderEx’.
Invalid event name/handler combination. To fix this warning, close the IB Trader
Workstation connection and create a new connection using ibtws.

“Workflow for Interactive Brokers” on page 2-6

“Writing and Running Custom Event Handler Functions with Interactive Brokers”
on page 1-26

Interactive Brokers API Reference Guide

See Also

close | createOrder | executions | getdata | history | ibtws | orderid |
timeseries

Introduced in R2015a

http://www.interactivebrokers.com/en/software/api/api.htm

portfolio

portfolio

Retrieve current Interactive Brokers portfolio data

Syntax

p = portfolio(ib)

p = portfolio(ib,acctno)

p = portfolio(ib,acctno,eventhandler)
Description

p = portfolio(ib) retrieves current Interactive Brokers portfolio data for the active
account number using the IB Trader Workstation connection ib.

p = portfolio(ib,acctno) retrieves current Interactive Brokers portfolio data using
the account number acctno.

p = portfolio(ib,acctno,eventhandler) retrieves current Interactive Brokers
portfolio data using an event handler function eventhandler. Use the sample event
handler ibExampleEventHandler or write a custom event handler function.

Examples

Retrieve Current Porifolio Data

Create the IB Trader Workstation connection ib on the local machine using port number
7496.

ib = ibtws("",7496);
Retrieve current Interactive Brokers portfolio data using ib.
p = portfolio(ib)

p:

4-257

4 Fynctions — Alphabetical List

Type: {5x1 cell}
Source: {5x1 cell}
EventID: {5x1 cell}
contract: {6x1 cell}
position: {5x1 cell}
marketPrice: {5x1 cell}
marketValue: {5x1 cell}
averageCost: {6x1 cell}
unrealizedPNL: {5x1 cell}
realizedPNL: {5x1 cell}
accountName: {56x1 cell}

p is a structure that contains these fields:

+ Event type

+ Interactive Brokers ActiveX object

* Event identifier

+ Contract details

* Number of shares for each contract

+ Price of the shares for each contract

* Number of shares multiplied by the price of the shares for each contract
+ Average price when the shares are purchased for each contract

+ Unrealized profit and loss for each contract

+ Actual profit and loss for each contract

* Account number

5x1 means there are five contracts in this portfolio. For details about this data, see
Interactive Brokers API Reference Guide.

Display the market price for each contract in the portfolio.
p-marketPrice
ans =

[8.60]
[582.95]
[591.79]
[188.44]
[42.24]

4-258

http://www.interactivebrokers.com/en/software/api/api.htm

portfolio

Close the IB Trader Workstation connection.
close(ib)

Retrieve Current Portfolio Data Using the Account Number

Create the IB Trader Workstation connection ib on the local machine using port number

7496.

ib = ibtws("",7496);

Retrieve current Interactive Brokers portfolio data using 1b and account number string

acctno.

acctno = "DU111111";

p portfolio(ib,acctno)

p:

Type: {6x1 cell}
Source: {5x1 cell}
EventlID: {5x1 cell}
contract: {5x1 cell}
position: {5x1 cell}
marketPrice: {5x1 cell}
marketValue: {5x1 cell}
averageCost: {5x1 cell}
unrealizedPNL: {5x1 cell}
realizedPNL: {5x1 cell}
accountName: {5x1 cell}

p is a structure that contains these fields:

+ Event type

+ Interactive Brokers ActiveX object

+ Event identifier

+ Contract details

* Number of shares for each contract

* Price of the shares for each contract

* Number of shares multiplied by the price of the shares for each contract

* Average price when the shares are purchased for each contract

4-259

4 Functions — Alphabetical List

4-260

+ Unrealized profit and loss for each contract
* Actual profit and loss for each contract

* Account number

5x1 means there are five contracts in this portfolio. For details about this data, see
Interactive Brokers API Reference Guide.

Display the market price for each contract in the portfolio.
p-marketPrice
ans =

[8.60]

[582.95]

[591.79]

[188.44]
[42.24]

Close the IB Trader Workstation connection.
close(ib)
Retrieve Current Portfolio Data Using an Event Handler

Create the IB Trader Workstation connection ib on the local machine using port number
7496.

ib = ibtws("",7496);

Retrieve current Interactive Brokers portfolio data using b, account number
string acctno, and sample event handler ibExampleEventHandler. Use
ibExampleEventHandler or write a custom event handler function.

acctno = "DU111111°"°;

portfolio(ib,acctno,@ibExampleEventHandler)

p
p:
L1

Columns 1 through 5

http://www.interactivebrokers.com/en/software/api/api.htm

portfolio

[1x1 COM.TWS_TwsCtrl_1] [103] [1x1 Interface.Tws_ActiveX_Control_module. 1Con

Columns 6 through 12

[515.10] [8.22] [21.68] [o01 "DU111111"

[1x1 struct]

"updatePortf

p is an empty double because ibExampleEventHandler displays the current Interactive

Brokers portfolio data for each security in the Command Window.

The columns are:

For details about this data, see Interactive Brokers API Reference Guide.

Interactive Brokers ActiveX object

Event identifier

IB Trader Workstation IContract object
Number of shares

Price of the shares

Number of shares multiplied by the price of the shares
Average price when the shares are purchased
Unrealized profit and loss

Actual profit and loss

Account number

Structure that repeats the contents of the columns

Event type

Close the IB Trader Workstation connection.

close(ib)

“Create and Manage an Interactive Brokers Order” on page 3-26

Input Arguments

ib — IB Trader Workstation connection
connection object

4-261

http://www.interactivebrokers.com/en/software/api/api.htm

4 Functions — Alphabetical List

IB Trader Workstation connection, specified as an IB Trader Workstation connection
object created using ibtws.

acctno — Account number
string

Account number, specified as a string that identifies the Interactive Brokers account
number.

Example:

Data Types: char

eventhandler — Event handler
function handle | string

Event handler, specified as a function handle or a string to identify an event handler
function that processes the returned data. Use the sample event handler or write a
custom event handler function. For details, see “Writing and Running Custom Event
Handler Functions with Interactive Brokers” on page 1-26.

Example: @eventhandler

Data Types: function_handle | char

Output Arguments

p — Interactive Brokers porifolio data
structure | double

Interactive Brokers portfolio data, returned as a structure. The structure contains these
fields. When using an event handler function, p is an empty double.

Field Description

Type Interactive Brokers event type name

Source Interactive Brokers ActiveX object

EventlID Number that identifies the event type

contract Structure that contains details for each
contract in the portfolio

4-262

portfolio

Field Description

position Number of shares for each contract in the
portfolio

marketPrice Price of the shares for each contract in the
portfolio

marketValue Number of shares multiplied by the price of

the shares for each contract in the portfolio

averageCost Average price when the shares are
purchased for each contract in the portfolio

unreal izedPNL Unrealized profit and loss for each contract
in the portfolio

realizedPNL Actual profit and loss for each contract in
the portfolio

accountName Account number

More About
Tips

* ibBuiltInErrMsg appears in the MATLAB workspace. Check the status of
connection and function execution by displaying the contents of this variable.
ibBui I'tInErrMsg contains messages related to:

+ Connection

Information resulting from executing functions

Errors
. “Workflow for Interactive Brokers” on page 2-6
. “Writing and Running Custom Event Handler Functions with Interactive Brokers”
on page 1-26

. Interactive Brokers API Reference Guide

See Also

close | createOrder | executions | getdata | history | ibtws | marketdepth
| timeseries

4-263

http://www.interactivebrokers.com/en/software/api/api.htm

4 Functions — Alphabetical List

Introduced in R2015a

4-264

realtime

realtime

Request Interactive Brokers real-time data

Syntax

tickerid realtime(ib, ibContract,)
tickerid = realtime(ib, ibContract,f,eventhandler)

Description

tickerid = realtime(ib, ibContract,) requests Interactive Brokers real-time
data using IB Trader Workstation connection ib, IB Trader Workstation 1Contract
object ibContract, and Interactive Brokers fields F.

tickerid = realtime(ib, ibContract, f,eventhandler) requests Interactive
Brokers real-time data using an event handler function eventhandler. Use the sample
event handler ibExampleEventHandler or write a custom event handler function.

Examples

Request Real-Time Data

To request real-time data, set up the IB Trader Workstation connection ib using
ibtws. Create an IB Trader Workstation 1Contract object ibContract as shown
in “Request Interactive Brokers Real-Time Data” on page 3-35. An IContract object
is an Interactive Brokers object for containing the data about a security to process
transactions. For details about creating this object, see Interactive Brokers API
Reference Guide.

Set the Interactive Brokers field F to 233 to denote the tick type for RTVolume.
RTVolume contains these fields:

+ Last trade price

+ Last trade size

4-265

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

4 Functions — Alphabetical List
P

* Last trade time

* Total volume

* Volume weighted average price (VWAP)
* Single trade flag

For details about RTVolume, see Interactive Brokers API Reference Guide.
Request real-time data using ib, ibContract, and f.
f = "233";

tickerid = realtime(ib, ibContract,f)

tickerid
1
tickerid returns a number for tracking the real-time data request.

The real-time data is returned in the MATLAB workspace variable
ibBuiltInRealtimeData.

Display this real-time data.
ibBuiltlnRealtimeData

ibBuiltInRealtimeData =

id: 1
BID_PRICE: 584.65

BID_SIZE: 1
ASK_PRICE: 585.80

ASK_SIZE: 1

LAST_PRICE: 585
LAST_SIZE: 1
VOLUME: 11611

The structure ibBui ltInRealtimeData contains these fields:

* Real-time request identifier
* Bid price

+ Bid size

4-266

http://www.interactivebrokers.com/en/software/api/api.htm

realtime

* Ask price

+ Ask size

* Last price

* Last size

* Volume

The id field is a number that tracks the real-time data request for IB Trader
Workstation IContract object ibContract. When you create multiple contracts, each

real-time data display has a different value for the id field that corresponds to a specific
contract.

Cancel the real-time market data request using tickerid.

ib.Handle.cancelMktData(tickerid)

Close the IB Trader Workstation connection.
close(ib)

Request Real-Time Data Using an Event Handler

To request real-time data, set up the IB Trader Workstation connection ib using
ibtws. Create an IB Trader Workstation 1Contract object ibContract as shown
in “Request Interactive Brokers Real-Time Data” on page 3-35. An IContract object
is an Interactive Brokers object for containing the data about a security to process
transactions. For details about creating this object, see Interactive Brokers API
Reference Guide.

Set the field F to the tick type for RTVolume 233. RTVolume contains:

* Last trade price

* Last trade size

* Last trade time

* Total volume

* Volume weighted average price (VWAP)
+ Single trade flag

For details about RTVolume, see Interactive Brokers API Reference Guide.

4-267

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

4 Functions — Alphabetical List

f = "233";

Request real-time data using ib, ibContract, and f. Use the sample event handler
ibExampleEventHandler to display the real-time data in the Command Window.

tickerid = realtime(ib, ibContract,f, ...
@ibExampleEventHandler)

tickerid

1
[1x1 COM.TWS_ TwsCtrl_1] [1] [1] [1] [585.50] [11 [1x1 struct]

[1x1 COM.TWS_TwsCtrl_1] [2] [1] [O] [1] [1x1 struct] "tickSize*

tickerid returns a number for tracking the real-time data request.

After the tickerid, ibExampleEventHandler streams real-time data to the Command
Window. Each line is a type of tick. Here, there is a price tick and size tick.

For a price tick, the IB Trader Workstation returns:

* Interactive Brokers ActiveX object

+ Event identifier

* Request identifier

* Tick type

* Price

+ Automatic execution flag

+ Structure that repeats the contents of the columns

+ Event type
For details about this data, see Interactive Brokers API Reference Guide.

Cancel the real-time market data request using tickerid.

ib.Handle.cancelMktData(tickerid)

Close the IB Trader Workstation connection.

4-268

http://www.interactivebrokers.com/en/software/api/api.htm

realtime

close(ib)

. “Request Interactive Brokers Real-Time Data” on page 3-35

Input Arguments

ib — IB Trader Workstation connection
connection object

IB Trader Workstation connection, specified as an IB Trader Workstation connection
object created using ibtws.

ibContract — IB Trader Workstation contract
IContract object | cell array

IB Trader Workstation contract, specified as an IB Trader Workstation 1Contract
object or a cell array for multiple IB Trader Workstation IContract objects. This
object is the instrument or security used in the order transaction. Create this object
by calling the Interactive Brokers API function createContract. For details about
createContract and the attributes that you can set, see Interactive Brokers API
Reference Guide.

Data Types: cell

f — Interactive Brokers fields
string | cell array

Interactive Brokers fields, specified as a string or a cell array of strings. These fields
correspond to numeric identifiers that specify the Interactive Brokers generic market
data tick types. For details, see Interactive Brokers API Reference Guide.

Data Types: char | cell

eventhandler — Event handler
function handle | string

Event handler, specified as a function handle or a string to identify an event handler
function that processes the returned data. Use the sample event handler or write a
custom event handler function. For details, see “Writing and Running Custom Event
Handler Functions with Interactive Brokers” on page 1-26.

Example: @eventhandler

4-269

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

4 Functions — Alphabetical List

Data Types: function_handle | char

Output Arguments

tickerid — Interactive Brokers market request identifier
double

Interactive Brokers market request identifier, specified as a double for tracking and
canceling the market data request. tickerid is a scalar for one Interactive Brokers
contract and a vector of scalars for multiple contracts.

More About
Tips
* 1bBui ItInErrMsg appears in the MATLAB workspace. Check the status of

connection and function execution by displaying the contents of this variable.
ibBui l'tInErrMsg contains messages related to:
+ Connection

+ Information resulting from executing functions

Errors
. “Workflow for Interactive Brokers” on page 2-6
. “Writing and Running Custom Event Handler Functions with Interactive Brokers”
on page 1-26
. Interactive Brokers API Reference Guide
See Also

close | createOrder | history | ibtws | timeseries

Introduced in R2015a

4-270

http://www.interactivebrokers.com/en/software/api/api.htm

fixflyer

fixflyer

FIX Flyer connection

Syntax

c = Fixflyer(username,password, ipaddress,port)

Description

c = fTixflyer(username,password, ipaddress, port) creates a connection to
the FIX Flyer Engine with user name username, password password, IP address
ipaddress, and port number port.

Examples

Connect to the FIX Flyer Engine

To create a connection to FIX Flyer for the first time, add these JAR files to the static
Java class path by editing the Javaclasspath. txt file. These files are located in the
folder where FIX Flyer is installed. This list assumes an installation of FIX Flyer version
5.0.1.
- \FIXFlyer\fix-flyer-5.
- \FIXFlyer\fix-flyer-5.
- \FIXFlyer\fix-flyer-5.
- \FIXFlyer\fix-flyer-5.
- \FIXFlyer\fix-flyer-5.
- \FIXFlyer\fix-flyer-5.
- \FIXFlyer\fix-flyer-5.

-I\devkit\lib\fix-Fflyer.jar
-I\devkit\lib\flyer-apps.jar
-I\devkit\lib\flyer-tools_jar
-I\devkit\lib\mod-flyer.jar
-.I\devkit\lib\quickfix. jar
-I\lib\core\trove-2.0.4._jar
-I\lib\core\mg4j-0.8.1._jar

O O O O o o o

If you are running Linux® or Mac, the JAR file path has a different format. For example,
/FIXFlyer/Tix-flyer-5.0_1/devkit/lib/fix-flyer._jar.

Import the FIX Flyer Java libraries.

4-271

4 Functions — Alphabetical List
P

4-272

import flyer.apps.*;

import flyer.apps.FlyerApplicationManagerFactory.>;

import flyer.core.session.*;

Create the FIX Flyer Engine connection € using these arguments:

* User name username
+ Password password
* IP address ipaddress

* Port number port

username “user”;
password "pwd”;
ipaddress = "127.0.0.17;
port = 7002;

C
c =

fixflyer with properties:

User:

Ipaddress:

Port:
FlyerApplicationManager:
SessionlD:

Ffixflyer(username,password, ipaddress, port)

“user”

"127.0.0.1"

7002.00

[1x1 Flyer.apps-FlyerApplicationManager]

L1

c is the FIX Flyer Engine connection object with these properties:

* User name
+ IP address

+ Port number

* FIX Flyer application manager instance

* FIX Flyer session identifier

Close the FIX Flyer connection.

close(c)

. “Create an Order Using FIX Flyer” on page 1-19

fixflyer

Input Arguments

username — FIX Flyer user name
string

FIX Flyer user name, specified as a string.
Data Types: char

password — FIX Flyer password

string

FIX Flyer password, specified as a string.
Data Types: char

ipaddress — IP address
string

IP address, specified as a string to denote the IP address of the computer where the FIX
Flyer Engine is running.

Example:

Data Types: char

port — Port number
scalar

Port number, specified as a scalar to denote the port number on the computer where the
FIX Flyer Engine is running.

Data Types: double

Output Arguments

¢ — FIX Flyer connection
connection object

FIX Flyer connection, returned as a FIX Flyer connection object with these properties.

Property Description

User FIX Flyer user name

4-273

4 Functions — Alphabetical List

4-274

Property Description

Ipaddress IP address of the computer where the FIX
Flyer Engine is running

Port Port number of the computer where the

FIX Flyer Engine is running

FlyerApplicationManager

FIX Flyer application manager instance

SessionlD

FIX Flyer session identifier

More About

. “Workflow for FIX Flyer” on page 2-10
. FIX Flyer Download Portal
. FIX Trading Community

See Also

close | sendMessage

Introduced in R2015b

http://downloads.fixflyer.com
http://www.fixtradingcommunity.org/

addListener

addListener

Add event handling listener to FIX Flyer connection

Syntax

Ih = addListener(c, listener)

Description

Ih = addListener(c, listener) adds the event handling listener listener
to the FIX Flyer Engine connection c. Use the sample event handling listener
fixExampleListener or write a custom event handling listener function.

Examples

Listen for FIX Flyer Event Data
Create the FIX Flyer Engine connection € using these arguments:

* User name username
+ Password password

* IP address ipaddress
* Port number port

username “user”;
password "pwd*;
ipaddress = "127.0.0.1%;
port = 7002;

c = fixflyer(username,password, ipaddress,port);

Add the FIX Flyer event listener to the FIX Flyer Engine connection c. To listen for and
display the FIX Flyer Engine event data in the Workspace browser, use the sample event
handling listener FixExampleListener. Use FixExampleListener or write a custom
event handling listener function.

4-275

4 Functions — Alphabetical List

4-276

FixExampleListener handles the FIX Flyer Engine events. € denotes these events.
You can specify e as any letter.

Ih = addListener(c,@(~,e)fixExampleListener(e));
TixExampleListener returns a handle to the listener Ih.

When events occur, FixExampleListener returns event data to objects in the MATLAB
Workspace. To view event data, double click the object. The Variables dialog box displays
the data in the object.

Close the FIX Flyer Engine connection.
close(c)

. “Create an Order Using FIX Flyer” on page 1-19

Input Arguments

¢ — FIX Flyer Engine connection
connection object

FIX Flyer Engine connection, specified as a connection object created using FixFlyer.

listener — Listener event handler
function

Listener event handler, specified as a function handle to listen for FIX Flyer Engine

event data. You can modify the existing listener function or define your own. You can find
the code for the existing listener function in the FixExampleListener .m file.

Data Types: function_handle

Output Arguments

Ih — Listener handle
object

Listener handle, returned as a handle to a FIX Flyer listener object.

addListener

More About

“Workflow for FIX Flyer” on page 2-10

See Also

close | Fixflyer | sendMessage

Introduced in R2015b

4-277

4 Functions — Alphabetical List

4-278

sendMessage

Send FIX message to FIX Flyer Engine

Syntax

status = sendMessage(c, FixmsQg)

Description

status = sendMessage(c, fixmsg) sends the FIX message Fixmsg using the FIX
Flyer Engine connection c.

Examples
Send FIX Message

Create the FIX Flyer Engine connection € using these arguments:

* User name username
+ Password password

+ IP address ipaddress
* Port number port
username = "user";
password "pwd”;

ipaddress = "127.0.0.17;
port = 7002;

c = fixflyer(username,password, ipaddress,port);

Add the FIX Flyer event listener to the FIX Flyer Engine connection c. To listen for and
display the FIX Flyer Engine event data in the Workspace browser, use the sample event
handling listener FixExampleListener. Use FixExampleListener or write a custom
event handling listener function.

FfixExampleListener handles the FIX Flyer Engine events. € denotes these events.
You can specify e as any letter.

sendMessage

lh = addListener(c,@(~,e)fixExampleListener(e));
TixExampleListener returns a handle to the listener Ih.

Subscribe to FIX sessions and set up the FIX Flyer Application Manager. Register with
the FIX Flyer session. Connect the FIX Flyer Application Manager to the FIX Flyer
Engine and start the internal receiving thread.
c.SessionlD = flyer.core.session.SessionlD("Alpha”, ...

"Beta®,"FIX.4.4%);
c.FlyerApplicationManager.registerFIXSession(...

flyer.apps.FixSessionSubscription(...

c.SessionlD, true,0));

c.FlyerApplicationManager.connect();
c.FlyerApplicationManager.start();

Create a FIX message using a table Fixtable. This table contains two FIX messages.
The first row in the table represents a sell side transaction for 100 shares of symbol ABC.
The order type is a previously quoted order. The order handling instruction is a private
automated execution. The order transaction time is the current moment. The second row
in the table has the same order field variables except that the order identifier is unique
across orders. The FIX protocol version is 4.4.

fixtable = table({"FIX.4_.4";"FIX.4.4"}, ...
{°3387;"339"},{"2";"2"}, ...
{datestr(now) ;datestr(now)}, ...
{°D";"D"}.{"ABC";"ABC"}, ...
{717;"17},{"100";"100"}, - - .
"VariableNames" ,{"BeginString”
"CLOrdld" "Side" "TransactTime"
"OrdType®™ "Symbol*
"HandlInst® "OrderQty"}):;

Send the FIX message using the FIX message Fixtable.
status = sendMessage(c, fixtable)

status =

0

status contains the FIX Flyer Engine message status for each FIX message sent. If the
FIX message is sent successfully, status contains a logical zero. status has an entry
for each FIX message in Fixtable.

4-279

4 Functions — Alphabetical List
P

4-280

The MATLAB Workspace variable fFixResponseStruct contains the returned FIX
messages from the FIX Flyer Engine.

Close the FIX Flyer Engine connection.
close(c)

. “Create an Order Using FIX Flyer” on page 1-19

Input Arguments

¢ — FIX Flyer Engine connection
connection object

FIX Flyer Engine connection, specified as a connection object created using FixFlyer.

fixmsg — FIX message
table | structure

FIX message, specified as a table or structure.

Example: Fixtable = table({"FIX.4.47;"FI1X.4.4"}, ...
{"338";"339"},{"2";"2"}, - ..

{datestr(now) ;datestr(now)}, - ..
{"D";"D"},{"ABC";"ABC"}, ...
{"1°;"1"},{"100";"100"%}, - .-

"VariableNames® ,{"BeginString*”

"CLOrdId"® "Side" "TransactTime®

"OrdType" "Symbol*®

"HandlInst® “OrderQty"});

Data Types: table | struct

Output Arguments

status — Send message status
logical

Send message status, returned as an array of logical zeroes or ones. The array contains
an entry for each FIX message in fFixmsg. If a FIX message is sent successfully, status
contains a zero. Otherwise, status contains a one.

sendMessage

More About

“Workflow for FIX Flyer” on page 2-10
FIX Trading Community

See Also

addListener | close | fixflyer

Introduced in R2015b

4-281

http://www.fixtradingcommunity.org/

4 Functions — Alphabetical List

4-282

close

Close FIX Flyer connection

Syntax

close(c)

Description

close(c) closes the FIX Flyer Engine connection C.

Examples

Close the FIX Flyer Connection

Create the FIX Flyer Engine connection C using these arguments:

* User name username
+ Password password
+ IP address ipaddress

* Port number port

username = "user”;
password = "pwd";
ipaddress = "127.0.0.1%;
port = 7002;

c = fixflyer(username,password, ipaddress,port);
Close the FIX Flyer Engine connection.
close(c)

. “Create an Order Using FIX Flyer” on page 1-19

close

Input Arguments

¢ — FIX Flyer Engine connection
connection object

FIX Flyer Engine connection, specified as a connection object created using FixFlyer.
More About

“Workflow for FIX Flyer” on page 2-10

See Also
Fixflyer

Introduced in R2015b

4-283

4 Functions — Alphabetical List

fix2struct

Convert FIX message string to structure array

Syntax

fixstruct = fix2struct(fixstr)

Description

fixstruct = Fix2struct(Fixstr) converts raw FIX message strings in the cell
array FIXStr to a structure array fixstruct.

Examples

Convert FIX String to Structure Array

For this example, assume that a counterparty sends you raw FIX messages in Fixstr.
The FIX protocol version is 4.4.

Convert the raw FIX messages in FIXStr to a structure array Fixstruct. There are two
raw FIX messages in Fixstr.

Ffixstruct = fix2struct(fixstr)

fixstruct

BeginString: {2x1 cell}
CIOrdID: {2x1 cell}
Side: {2x1 cell}
TransactTime: {2x1 cell}
OrdType: {2x1 cell}
Symbol: {2x1 cell}
HandlInst: {2x1 cell}
OrderQty: {2x1 cell}

The structure array Fixstruct contains a structure for each raw FIX message string in
Fixstr. The structure fields correspond to the FIX tags in the raw FIX message.

4-284

fix2struct

Display the order type for each FIX message.
fixstruct.OrdType
ans =

D"
D"

Both FIX messages specify previously quoted orders.

Input Arguments

fixstr — FIX message
cell array

FIX message, specified as a cell array of one or more raw FIX message strings.
Example:

Data Types: cell

Output Arguments

fixstruct — FIX message
structure

FIX message, specified as a structure array containing the converted raw FIX messages
in Fixstr. The structure fields and values correspond to the FIX tag names and values
in the raw FIX message string.

More About

. “Workflow for FIX Flyer” on page 2-10
. FIX Trading Community

See Also
fix2table | fixFlyer | struct2fix | table2fix

4-285

http://www.fixtradingcommunity.org/

4 Functions — Alphabetical List

Introduced in R2015b

4-286

fix2table

fix2table

Convert FIX message string to table

Syntax

fixtable = fix2table(fixstr)

Description

Ffixtable = fix2table(fixstr) converts raw FIX message strings in the cell array
Fixstr to a table Fixtable.

Examples

Convert FIX String to Table

For this example, assume that a counterparty sends you raw FIX messages in Fixstr.
The FIX protocol version is 4.4.

Convert the raw FIX messages in Fixstr to a table Fixtable. There are two raw FIX
messages in Fixstr.

fixtable = fix2table(fixstr)

fixtable =
BeginString ClordID Side TransactTime OrdType Symbol
"FIX.4.4" "338* 2T "19-May-2015 15:00:38" D" " 1BM*
"FIX.4.4" "338* 2T "19-May-2015 15:00:38" D" "1BM*

4-287

4 Functions — Alphabetical List

4-288

The table Fixtable contains a row for each raw FIX message string in Fixstr. The
variable names in the table correspond to the FIX tags in the raw FIX message.

Input Arguments

fixstr — FIX message

cell array

FIX message, specified as a cell array of one or more raw FIX message strings.
Example:

Data Types: cell

Output Arguments

fixtable — FIX message
table

FIX message, specified as a table containing the converted raw FIX messages in Fixstr.
The table variables correspond to the FIX tag names that are specified in the raw FIX
message string. The table row contains the values that are specified for each tag in the
raw FIX message string.

More About

. “Workflow for FIX Flyer” on page 2-10
. FIX Trading Community

See Also
Fix2struct | Fixflyer | struct2fix | table2fix

Introduced in R2015b

http://www.fixtradingcommunity.org/

struct2fix

struct2fix

Convert structure array containing FIX tags to cell array of FIX message strings

Syntax

Ffixstr = struct2fix(fixstruct)

Description

fixstr = struct2fix(fixstruct) converts FIX messages in a structure array
Fixstruct to raw FIX message strings in the cell array Fixstr.

Examples

Convert FIX Message from Structure Array to String

Create a FIX message using a structure array Fixstruct. This structure array contains
two FIX messages. The first structure in the structure array represents a sell side
transaction for 100 shares of symbol ABC. The order type is a previously quoted order.
The order handling instruction is a private automated execution. The order transaction
time is the current moment. The FIX protocol version is 4.4. The second structure in the
structure array has the same order field values except that the order identifier is unique
across orders.

fixstruct_BeginString{1l,1} = "FIX.4.4%;
fixstruct_CLOrdld{1,1} = "338";
fixstruct._Side{l,1} = "2°;
fixstruct.TransactTime{l,1} = datestr(now);
fixstruct_.OrdType{1,1} = °"D-";
fixstruct_Symbol{1,1} = "ABC";
fixstruct_HandlInst{l1,1} = "1°;
fixstruct_OrderQty{1,1} = "100";

fixstruct_BeginString{2,1} = "FIX.4.4%;
fixstruct_CLOrdld{2,1} = "339°;

4-289

4 Fynctions — Alphabetical List

4-290

fixstruct._Side{2,1} = "2°;
fixstruct.TransactTime{2,1} = datestr(now);
fixstruct.OrdType{2,1} = °"D-;
fixstruct_Symbol{2,1} = "ABC";
fixstruct_HandlInst{2,1} = "1°;
Ffixstruct._OrderQty{2,1} = "100";

Convert the FIX messages in the structure array Fixstruct to a cell array of the raw
FIX message strings Fixstr.

Fixstr = struct2fix(fixstruct)
fixstr =

"8=F1X.4.4 11=338 54=2 60=21-May-2015 11:18:46 40=D 55=ABC 21=1 38=100 *
"8=FI1X.4.4 11=339 54=2 60=21-May-2015 11:18:47 40=D 55=ABC 21=1 38=100 *

Each string is a raw FIX message string that contains FIX tags and values. The space in
between the tag and value pairs is a SOH character. This character is not printable and
has a hexadecimal value of Ox01.

Input Arguments

fixstruct — FIX message
structure

FIX message, specified as a structure array. The data in the structure represents one FIX
message. The structure fields correspond to FIX tag names. The structure values are the
values that you specify in the FIX message.

Example: FixStruct.BeginString{l,1} = "FIX.4.4%;
FixStruct.CLOrd1d{1,1} = "338";
fixStruct.Side{l1,1} = "27;
fixStruct.TransactTime{l,1} = datestr(now);
fixStruct.OrdType{l,1} = "D";
fixStruct.Symbol{1,1} = "ABC";
fixStruct.HandlInst{1,1} = "1~;
fixStruct.OrderQty{1,1} = "100°;

Data Types: struct

struct2fix

Output Arguments

fixstr — FIX message
cell array

FIX message, returned as a cell array of one or more converted raw FIX message strings.
The number of strings depends on the number of messages that you specify in the input

argument.

More About

. “Workflow for FIX Flyer” on page 2-10
. FIX Trading Community

See Also
fix2struct | fix2table | Fixflyer | table2fix

Introduced in R2015b

4-291

http://www.fixtradingcommunity.org/

4 Functions — Alphabetical List

table2fix

Convert table containing FIX tags to cell array of FIX message strings

Syntax

Ffixstr = table2fix(fixtable)

Description

fixstr = table2fix(Ffixtable) converts the FIX messages in the table Fixtable to
raw FIX message strings in the cell array Fixstr.

Examples

Convert FIX Message from Table to String

Create a FIX message using a table Fixtable. This table contains two FIX messages.
The first row in the table represents a sell side transaction for 100 shares of symbol ABC.
The order type is a previously quoted order. The order handling instruction is a private
automated execution. The order transaction time is the current moment. The second row
in the table has the same order field variables except that the order identifier is unique
across orders. The FIX protocol version is 4.4.

fixtable = table({"FIX.4.47;"FIX. 4.4}, ...
{"338";"339"},{"2";"2"}, ...
{datestr(now) ;datestr(now)}, ...
{°D";"D"},{"ABC";"ABC"}, ...
{"1";"1"},{"100";"100"}, - - .
"VariableNames” ,{"BeginString” ...
"CLOrdld" "Side" "TransactTime*
"OrdType® “Symbol® ...
"HandlInst® "OrderQty"});

Convert the FIX messages in the table Fixtable to a cell array of the raw FIX message
strings Fixstr.

4-292

table2fix

Ffixstr = table2fix(fixtable)

Fixstr =

"8=FI1X.4.4 11=338 54=2 60=22-May-2015 14:14:21 40=D 55=ABC 21=1 38=100 *
"8=FI1X.4.4 11=339 54=2 60=22-May-2015 14:14:21 40=D 55=ABC 21=1 38=100 *

Each string is a raw FIX message string that contains FIX tags and values. The space in
between the tag and value pairs is a SOH character. This character is not printable and
has a hexadecimal value of Ox01.

Input Arguments

fixtable — FIX message
table

FIX message, specified as table. The table variables correspond to FIX tag names. Each
row contains the values you specify for the FIX message. Specify the values for each
variable as a cell array of strings.

Example: Fixtable = table({"FIX.4.4";"FIX.4.4"}, ...
{"3387;"339"},{"2";"2"}, ...

{datestr(now) ;datestr(now)}, - -.
{°D";"D"},{"ABC";"ABC"}, - --
{"1";"1"},{"100";"100%}, - -.

"VariableNames" ,{"BeginString”

"CLOrdId" "Side® "TransactTime®

"OrdType® “Symbol*

"HandlInst® "OrderQty"});

Data Types: table

Output Arguments

fixstr — FIX message
cell array

FIX message, returned as a cell array of one or more converted raw FIX message strings.
The number of strings depends on the number of messages that you specify in the input
argument.

4-293

4 Functions — Alphabetical List

4-294

More About

“Workflow for FIX Flyer” on page 2-10
FIX Trading Community

See Also

fix2struct | fix2table | fixFflyer | struct2fix

Introduced in R2015b

http://www.fixtradingcommunity.org/

